№БАСТИОН

ИСТОЧНИК ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ РЕЗЕРВИРОВАННЫЙ ВОСЬМИКАНАЛЬНЫЙ **SKAT-V.8 Li-ion**

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Благодарим Вас за выбор нашего источника вторичного электропитания резервированного восьмиканального, который обеспечит надежную работу систем сигнализации и связи на объекте.

Перед эксплуатацией ознакомьтесь с настоящим руководством.

Руководство по эксплуатации содержит основные технические характеристики, описание конструкции и принципа работы, способ установки на объекте и правила безопасной эксплуатации источника вторичного электропитания резервированного восьмиканального SKAT-V.8 Li-ion (далее по тексту: изделие, источник).

Изделие SKAT-V.8 Li-ion предназначено для питания по восьми выходам видеокамер и других нагрузок с номинальным напряжением питания 12 В и номинальным током потребления по каждому выходу до 0,5 А при работе от сети переменного тока 220 В и в режиме резерва — от встроенной Li-ion аккумуляторной батареей с номинальным напряжением 24 В.

Встроенная Li-ion АКБ обладает следующими преимуществами (далее по тексту АКБ):

- высокий уровень удельной емкости и плотности разрядного тока;
- минимальный саморазряд (при 20 °C не более 3% в год);
- длительный срок службы (до 10 лет);
- большое количество циклов заряда-разряда;
- работоспособность в широком диапазоне температур;
- высокая сохранность запасенной энергии и постоянная готовность к работе:
- отсутствие необходимости обслуживания.

Изделие обеспечивает:

- питание нагрузки стабилизированным напряжением (п.2 таблицы 1) при наличии напряжения в электрической сети и в режиме резерва (питание от АКБ);
- оптимальный заряд АКБ при наличии напряжения в электрической сети, см. п.6 таблицы 1:
- автоматический переход на резервное питание при снижении напряжения электрической сети ниже допустимого уровня (п.1 таблицы 1) или при отключении электрической сети:
- защиту нагрузки от повышенного выходного напряжения (свыше 18 В) при неисправности выходных преобразователей путем пережигания плавкого предохранителя (предохранитель входной - см. рис. 3);
- защиту батареи от глубокого разряда;
- индикацию наличия напряжения сети светодиодным индикатором «Сеть».
 Выходного напряжения, посредством светодиодного индикатора «Выход» и цифрового дисплея соответственно;
- электронную защиту выходов от перегрузки по току, в т.ч. короткого замыкания, с восстановлением нормального режима работы после устранения перегрузки;
- фильтрацию помех для устранения взаимного влияния нагрузок;
- возможность плавной регулировки напряжения каждой пары выходов, см. п.2 таблицы 1.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1

№ п/п	Наименование параметра		Значения параметра	
1	Напряжение питающей сети ~220 В, частотой 50 Гц с пределами изменения, В		187242	
2	Выходное напряжение каждого канала, В	Минимальное значение	11,8 – 12,9 ¹⁾	
		Максимальное значение	14,6 - 15,2	
3	Регулировка выходного напряжения		плавная	
4	Номинальный ток нагрузки каждого выхода, А		0,52)	
5	Напряжение батареи, при котором происходит отключение нагрузки, В		21 – 22,5	
6	Напряжение полностью заряженной батареи, В, не менее		27,0	
7	Ток заряда батареи, А		1,1- 1,5	
8	Величина напряжения пульсации при номинальном токе нагрузки, мВ, не более		30	
9	Ток ограничения выхода при коротком замыкании нагрузки, A, не более		2,8	
10	Мощность, потребляемая от сети без нагрузки, Вт, не более		20	
11	Тип встроенной АКБ: Li-ion, номинальным напряжением 12 В			
12	Емкость встроенной АКБ, Ач		12	
13	Количество АКБ, шт.		2	
14	Габаритные размеры ШхГхВ, не	без упаковки	333x134x240	
	более, мм	в упаковке	350x140x247	
15	Масса (без АКБ), НЕТТО (БРУТТО), кг, не более		2,9 (3,3)	
16	Диапазон рабочих температур, °С		-10+40	
17	Относительная влажность воздуха при 25 °C, %, не более		90	
18	Степень защиты оболочкой по ГОСТ 14254-2015		IP20	
<u>^</u>	ВНИМАНИЕ! Не допускается наличия в воздухе токопроводящей пыли и			
	паров агрессивных веществ (кислот, щелочей и т. п.)			

Примечание:

СОДЕРЖАНИЕ ДРАГОЦЕННЫХ МЕТАЛЛОВ И КАМНЕЙ

Изделие драгоценных металлов и камней не содержит.

¹⁾ Заводская установка. При номинальном токе нагрузки выходное напряжение уменьшается на 0,2 - 0,3 В.

²⁾ Допускается увеличение тока нагрузки каждого выхода до 1А, при этом суммарный ток пары выходов не должен превышать 1А.

КОМПЛЕКТ ПОСТАВКИ

Наименование	Количество
Изделие SKAT-V.8 Li-ion	1 шт.
Руководство по эксплуатации	1 экз.
Предохранитель автомобильный 5A (тип ATQ)	1 шт.
Предохранитель 6,3 А 250В (ВПТ6)	1 шт.

УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ

КРАТКОЕ ОПИСАНИЕ КОНСТРУКЦИИ

Изделие содержит следующие конструктивные элементы:

- корпус, состоящий из основания и крышки см. рис. 1;
- плату зарядного устройства (ЗУ) см. рис. 2 и плату преобразователя напряжения PN-V.8 см. рис. 2 и рис. 3;
- встроенные АКБ Li-ion 2 шт. соединенные последовательно в батарею;
- панель светодиодную и цифровой дисплей;

Элементы защиты, управления и коммутации блоков показаны на рис.2 и рис.3:

- аккумуляторный (5,0A) расположен в разрыве перемычки аккумуляторной «+АКБ»;
- входной (6,3A) расположен на плате преобразователя напряжения PN-V.8; Индикаторы:
- индикатор «**CETb**» зеленого цвета свечения индицирует наличие сетевого напряжения;
- индикатор «**BЫХОД**» красного цвета свечения индицирует наличие напряжения питания преобразователей. Дополнительную индикацию выходного напряжения обеспечивает цифровой дисплей.

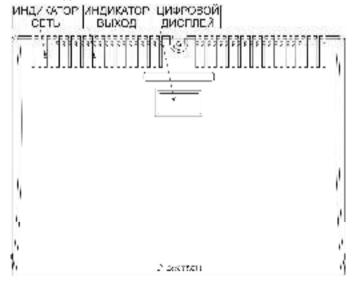


Рисунок 1 – Общий вид изделия

SKAT-V.8 Li-ion 12B 8x0,5A

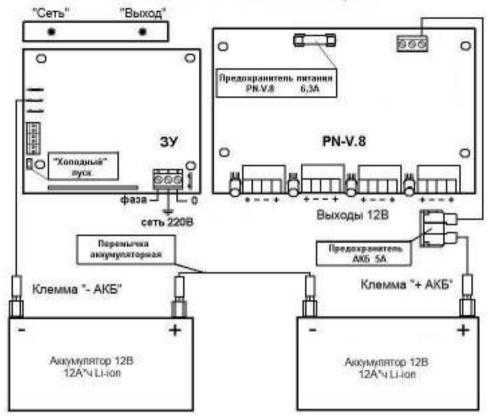


Рисунок 2 - схема расположения элементов источника

ОПИСАНИЕ РАБОТЫ

Источник имеет два основных режима работы – режим работы от сети и режим резерва. В обоих режимах работы источник обеспечивает электропитание нагрузок, подключенных к выходам 1 – 8 с номинальным напряжением питания 12 В и номинальным током потребления согласно п. 4 таблицы 1.

В режиме работы от сети индикаторы **«СЕТЬ»**, **«ВЫХОД»** и цифровой дисплей светятся непрерывно. В режиме резерва (при отсутствии сетевого напряжения) индикатор **«ВЫХОД»** и цифровой дисплей светится непрерывно, а индикатор **«СЕТЬ»** не светится.

Индикаторы «**Выход**» **1,2 – 7,8**, светодиоды красного цвета, расположенные на плате преобразователя напряжения PN-V.8 индицируют наличие выходных напряжений каждой пары выходов см. рис.3.

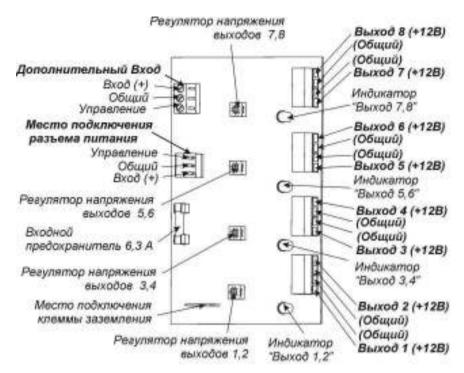


Рисунок 3 - расположение элементов коммутации, управления и индикации на плате преобразователя PN-V.8

При перегрузке по току (КЗ выхода) источник отключает питание нагрузок, подключенных к соответствующей паре выходов, индикатор «ВЫХОД» этой пары гаснет, (ток нагрузки ограничивается величиной, указанной в п.9 таблицы 1), остальные выходы продолжают обеспечивать питание нагрузки. После устранения причин перегрузки по току (КЗ), работоспособность соответствующей пары выходов восстанавливается автоматически.

Для компенсации падения выходного напряжения в соединительных линиях, в платах PN-V.8 предусмотрена возможность плавной регулировки напряжения каждой пары выходов, см. рис.3.

Для увеличения выходного напряжения необходимо повернуть регулятор напряжения против часовой стрелки см. рис.3.

В источнике предусмотрено устройство контроля напряжения на батарее с одним порогом срабатывания (защита батареи от глубокого разряда), отключающее аккумуляторную батарею от нагрузки при критическом для батареи уровне напряжения на ее клеммах в диапазоне, см. п.5 таблицы 1.

При отключении батареи для защиты от глубокого разряда в режиме резерва оба индикатора погашены. Источник может быть запущен в работу от батареи, при этом батарея должна быть заряжена до напряжения не менее 23В. Для этой цели в источнике установлена «ПЕРЕМЫЧКА ХОЛОДНЫЙ ЗАПУСК» см. рис .2.

МЕРЫ БЕЗОПАСНОСТИ

При установке и эксплуатации изделия необходимо руководствоваться действующими нормативными документами, регламентирующими требования по охране труда и правила безопасности при эксплуатации электроустановок.

Установку, демонтаж и ремонт изделия производить при отключенном питании.

ЗАПРЕЩАЕТСЯ:

- открывать крышку корпуса изделия при включенном сетевом напряжении;
- устанавливать в держатель предохранителя перемычки или плавкие вставки с номиналами, отличающимися от указанных в настоящем руководстве;
- закрывать вентиляционные отверстия изделия;

ВНИМАНИЕ!

Следует помнить, что в рабочем состоянии к изделию подводится опасное для жизни напряжение от электросети 220 В.

ВНИМАНИЕ!

Установку, демонтаж и ремонт производить при полном отключении изделия от электросети 220 В.

ВНИМАНИЕ!

Для полного выключения изделия сначала следует отключить напряжение сети, а затем отключить АКБ от изделия (отсоединить плюсовую клемму).

ВНИМАНИЕ!

ВНИМАНИЕ! СЕЧЕНИЕ И ДЛИНА СОЕДИНИТЕЛЬНЫХ ПРОВОДОВ НАГРУЗКИ ДОЛЖНЫ СООТВЕТСТВОВАТЬ МАКСИМАЛЬНЫМ ТОКАМ, УКАЗАННЫМ В ТАБЛИЦЕ 1.

ПРОВОДА ПОДВОДЯЩИЕ СЕТЕВОЕ ПИТАНИЕ ДОЛЖНЫ БЫТЬ В ДВОЙНОЙ ИЗОЛЯЦИИ СЕЧЕНИЕМ НЕ МЕНЕЕ 0,5мм²!

ВНИМАНИЕ!

Все работы по монтажу и подключению АКБ и изделия следует выполнять в электрозащитных диэлектрических перчатках!

УСТАНОВКА НА ОБЪЕКТЕ

ВНИМАНИЕ!

Установку изделия должен производить специально обученный персонал. Запрещается допускать к обслуживанию изделия и АКБ неквалифицированный персонал.

ВНИМАНИЕ!

Подключение проводов выходов должно производиться при отсоединенной плюсовой клемме АКБ и отключенном сетевом напряжении.

ВНИМАНИЕ!

При установке предусмотрите защиту от попадания на корпус изделия прямых солнечных лучей.

- Источник устанавливается в помещении с ограниченным доступом посторонних лиц. Источник может крепиться к стене или к другим вертикальным конструкциям, стоять на полу или на столе.
- В случае крепления источника к стене или любой другой вертикальной поверхности внутри помещения необходимо произвести разметку в соответствии с расположением крепежных отверстий на задней стенке корпуса.
- После выполнения крепежных гнезд корпус источника крепится к стене (или другим конструкциям) шурупами.
- Подключение источника производится при отключенном сетевом напряжении и открытой крышке см. рис.2 в следующей последовательности:
- подключить провод заземления к контакту заземления колодки «Сеть» источника, расположенной внутри корпуса;
- подключить провода сети 220 В 50 Гц к колодке «Сеть» источника с учетом указанной фазировки. см. рис.2:
- подключить подводящие провода нагрузок к клеммам «ВЫХОД», «ОБЩИЙ» платы преобразователя PN-V.8, минусовой провод к клемме «ОБЩИЙ», плюсовой к клемме «ВЫХОД», см. см. рис.3;

ВНИМАНИЕ! СЕЧЕНИЕ И ДЛИНА СОЕДИНИТЕЛЬНЫХ ПРОВОДОВ НАГРУЗКИ ДОЛЖНЫ СООТВЕТСТВОВАТЬ МАКСИМАЛЬНЫМ ТОКАМ, УКАЗАННЫМ В ТАБЛИЦЕ 1.

ПРОВОДА ПОДВОДЯЩИЕ СЕТЕВОЕ ПИТАНИЕ ДОЛЖНЫ БЫТЬ В ДВОЙНОЙ ИЗОЛЯЦИИ СЕЧЕНИЕМ НЕ МЕНЕЕ 0,5мм²!

ПОДГОТОВКА К РАБОТЕ

- Проверить правильность произведенного монтажа.
- Подключить, соблюдая полярность клемму АКБ: **красный провод к свободному плюсовому контакту**.
- Кратковременно, на 1 сек, замкнуть контакты «ПЕРЕМЫЧКИ ХОЛОДНЫЙ ЗАПУСК».
- Убедиться, что источник перешел на резервное питание (индикатор «СЕТЬ» не светится, индикатор «ВЫХОД» и цифровой дисплей светятся).
- При необходимости установить требуемые выходные напряжения, см. рис.3.

ВНИМАНИЕ! РЕГУЛИРОВКУ ВЫХОДНЫХ НАПРЯЖЕНИЙ ОСУЩЕСТВЛЯТЬ В РЕЖИМЕ РЕЗЕРВА ПРИ ОТКЛЮЧЕННОМ СЕТЕВОМ ПИТАНИИ!

- Подать сетевое напряжение и убедиться, что светятся оба индикатора.
- Отключить сетевое напряжение и убедиться, что источник перешел на резервное питание (индикатор «СЕТЬ» погас, индикатор «ВЫХОД» продолжает светиться), напряжение на нагрузке соответствует данным, указанным в таблице 1.
- Подать сетевое напряжение (индикатор «СЕТЬ» вновь должен светиться).
- Закрыть крышку корпуса и опломбировать ее при необходимости.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание должно производиться потребителем.

Персонал, необходимый для технического обслуживания, должен состоять из квалифицированных электриков, изучивших настоящий документ.

С целью поддержания исправности в период эксплуатации необходимо проведение регламентных работ.

Регламентные работы включают в себя периодический (не реже одного раза в полгода) внешний осмотр с удалением пыли, а также проверку работоспособности.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Таблица 2

Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина и метод устранения
При включении сетевого питания не светится индикатор « СЕТЬ » источника	Проверить качество контактов и наличие сетевого напряжения на входных клеммах изделия.
	Проверить предохранитель аккумуляторный 5A, при необходимости – заменить.
При отключении сетевого питания источник не переходит в режим резерва, индикаторы не светятся.	Проверить качество контактов на клеммах батареи. Проверить напряжение на клеммах батареи, которое должно составлять не менее 22,0 В. При напряжении менее 22,0 В – батареи зарядить, в случае неисправности – заменить на предприятии изготовителя.
В режиме работы от сети и в режиме резерва отсутствуют выходные напряжения	Проверить входной предохранитель на плате преобразователя напряжения, при необходимости – заменить. Перегрузка (короткое замыкание) выхода. Поочередно отключая нагрузки от выходов, найти перегруженный выход. Уменьшить ток нагрузки (устранить короткое замыкание) выхода.

При невозможности самостоятельно устранить нарушения в работе изделия направьте его в ремонт.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Срок гарантии устанавливается 5 лет со дня продажи. Если дата продажи не указана, срок гарантии исчисляется с момента (даты) выпуска.

Срок службы — **10 лет** с момента (даты) ввода в эксплуатацию или даты продажи. Если дата продажи или ввода в эксплуатацию не указаны, срок службы исчисляется с момента (даты) выпуска.

Предприятие-изготовитель гарантирует соответствие заявленным параметрам при соблюдении потребителем условий эксплуатации.

При наличии внешних повреждений корпуса и следов вмешательства в конструкцию гарантийное обслуживание не производится.

Гарантийное обслуживание производится предприятием-изготовителем.

ДЛЯ ЗАМЕТОК

СВИДЕТЕЛЬСТВО О ПРИЕМКЕ					
Источник вторичного электропитания резервированный восьмиканальный					
«SKAT-V.8 Li-ion»					
ОТМЕТКИ ПРОДАВЦА					

а/я 7532, Ростов-на-Дону, 344018 (863) 203-58-30

bast.ru — основной сайт teplo.bast.ru — электрооборудование для систем отопления bast.ru/solar - альтернативная энергетика skat-ups.ru — сеть фирменных магазинов «CKAT»

тех. поддержка: 911@bast.ru отдел сбыта: ops@bast.ru

горячая линия: 8-800-200-58-30