

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

RTD-20

EH[€

Роторный полноростовый сдвоенный турникет

СОДЕРЖАНИЕ

1		вначение Іовия эксплуатации	
3		новные технические характеристики	
4		иплект поставки	
4	4.1	Стандартный комплект поставки	
	4.2	Дополнительное оборудование и монтажные принадлежности,	
	4.2	поставляемые по отдельному заказу	1
5	Vст	ройство и работаройство и работа	
J	5.1	Основные особенности изделия	
	5.2	Устройство турникета	
	5.3	Устройства для управления турникетом	
	5.3.		
	5.3.		
	5.3.	7 1 71	
	5.3.	1 1 7 1	
	5.3.	· · · · · · · · · · · · · · · · · · ·	
	5.3.		
	5.3.	·	
		Дополнительные устройства, подключаемые к турникету	
	5.4.		
	5.4.		
	5.4.		
	5.5	Нештатные ситуации в работе турникета	
6		окировка и упаковка	
7		ры безопасности	
	7.1	Меры безопасности при монтаже	
	7.2	Меры безопасности при эксплуатации	
8	Мон	нтаж	
	8.1	Особенности монтажа	20
	8.2	Инструмент и оборудование, необходимые для монтажа	20
	8.3	Допустимые длины кабелей	21
	8.4	Монтаж турникета	
	8.5	Выбор режима прохода через турникет	29
	8.6	Регулировка демпфирующих устройств PERCo-RTD-20.2	30
	8.6.		30
	8.6.		
	8.7	Замена ламп подсветки прохода	31
	8.8	Проверка работоспособности турникета	
	8.8.	1 1 1 1 21	
	8.8.	1 1 1 71	
_	8.9	Схема подключения турникета и дополнительного оборудования	
9		плуатация	
	9.1	Включение турникета	
	9.2	Импульсный режим управления	
	9.3	Потенциальный режим управления	
	9.4	Действия в нештатных ситуациях	
40	9.5	Возможные неисправности	
10		иническое обслуживание	
11		инспортирование и хранение	
		ние 1. Алгоритм подачи команд управления при импульсном режиме	
		ние 2. Алгоритм подачи команд управления при потенциальном режиме ние 3. Схемы разметки для совместного с <i>PERCo-RTD-20</i>	40
1 14	אטו נועכ	ние 5. Схемы разметки для совместного с <i>РЕКСО-КТО-20</i> монтажа элементов пропускного пункта	46
		WOLLIAMA OLOWOLLOD HDULLYONIOU TIVINIA	- T ()

Уважаемые покупатели!

PERCo благодарит вас за выбор турникета нашего производства. Сделав этот выбор, вы приобрели качественное изделие, которое, при соблюдении правил монтажа и эксплуатации, прослужит вам долгие годы.

Руководство по эксплуатации турникета роторного полноростового сдвоенного *PERCo-RTD-20* (далее – *руководство*) содержит сведения по транспортированию, хранению, монтажу, эксплуатации и техническому обслуживанию указанного изделия.

Принятые в руководстве сокращения и условные обозначения:

ДКЗП – датчик контроля зоны прохода;

ИП – источник питания;

ИУ – исполнительное устройство (одна из двух частей турникета);

ЛПП – лампы подсветки прохода;

ПДУ – пульт дистанционного управления;

РУ – радиоуправление;

СКУД – система контроля и управления доступом.

1 НАЗНАЧЕНИЕ

Турникет роторный полноростовый сдвоенный PERCo-RTD-20 (далее — myрникеm) является сдвоенной модификацией роторного полноростового турникета PERCo-RTD-16. Турникет используется в качестве двух независимых управляемых преграждающих устройств (далее — NY), предназначенных для контроля прохода людей на пропускных пунктах объектов с повышенными требованиями к безопасности и необходимостью полного перекрытия зон прохода по высоте.

Как и **PERCo-RTD-16**, турникет выпускается в двух модификациях:

- *PERCo-RTD-20.1* с электроприводами автоматического доворота створок;
- *PERCo-RTD-20.2* с механическими приводами доворота створок.

По желанию заказчика турникет может быть укомплектован роторами из нержавеющей стали (варианты комплектации с литерой «S» – *PERCo-RTD-20.1S* и *PERCo-RTD-20.2S*).

Количество турникетов, необходимое для обеспечения быстрого и удобного прохода людей, рекомендуется определять, исходя из пропускной способности турникета (см. разд. 3).

2 УСЛОВИЯ ЭКСПЛУАТАЦИИ

Турникет по устойчивости к воздействию климатических факторов внешней среды соответствует исполнению У1 по ГОСТ 15150-69 (для эксплуатации на открытом воздухе).

Эксплуатация турникета разрешается при температуре окружающего воздуха от –40°С до +50°С (при использовании под крышей или под навесом – до +55°С) и относительной влажности воздуха до 98% при +25°С.

ПДУ по устойчивости к воздействию климатических факторов внешней среды соответствует исполнению УХЛ4 по ГОСТ 15150-69 (для эксплуатации в помещениях с искусственно регулируемыми климатическими условиями).

Эксплуатация ПДУ разрешается при температуре окружающего воздуха от +1°C до +40°C и относительной влажности воздуха до 80% при +25°C.

3 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ1

 Напряжение питания постоянного тока, В:
 24±2,4

 ЛПП
 12±1,2

2

¹ Приводимые в разделе характеристики относятся ко всем модификациям турникета, если нет указаний на его конкретную модификацию.

Потребляемая мощность, <i>Bm</i> ¹ : турникета <i>PERCo-RTD-20.1</i> без ЛПП	
для ИУ №1	ио болоо 105 ²
для ИУ №2	
турникета PERCo-RTD-20.2 без ЛПП	не оолее 100
для ИУ №1	не более 30
для ИУ №2	
ЛПП (суммарно для обоих проходов)	
Пропускная способность для каждого ИУ турникета, <i>человек/мин</i> :	
в режиме однократного прохода	20
в режиме свободного прохода	
Средняя пропускная нагрузка для каждого ИУ турникета	
при однократном проходе, <i>человек/сутки</i>	2000
Ширина каждой из двух зон прохода, мм	
Усилие поворота на середине створки ротора, <i>кас</i>	
Степень защиты оболочки (балки привода)	
Класс защиты от поражения электрическим током	
Средняя наработка на отказ для каждого ИУ турникета, проходов	
Средний срок службы, лет	
Габаритные размеры (длина × ширина × высота), <i>мм</i>	2480×1595×2303°
Macca (нетто), ка:	<i>5</i> 070
турникет PERCo-RTD-20.1	
турникет PERCo-RTD-20.2	не оолее 3/5
4 КОМПЛЕКТ ПОСТАВКИ	
4.1 Стандартный комплект поставки	
Ящик №1 «Балка привода»	1, в нем:
Основное оборудование:	
Основное оборудование: Балка привода с крышкой, <i>шт</i> .	1
Основное оборудование: Балка привода с крышкой, <i>шт.</i> Ключи замков механической разблокировки, <i>шт.</i>	1
Основное оборудование: Балка привода с крышкой, <i>шт.</i> Ключи замков механической разблокировки, <i>шт.</i> Сборочно-монтажные принадлежности:	
Основное оборудование: Балка привода с крышкой, <i>шт.</i> Ключи замков механической разблокировки, <i>шт.</i> Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, <i>шт.</i>	
Основное оборудование: Балка привода с крышкой, <i>шт.</i> Ключи замков механической разблокировки, <i>шт.</i> Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, <i>шт.</i> Винт крепления крышки M5×16, <i>шт.</i>	
Основное оборудование: Балка привода с крышкой, <i>шт.</i> Ключи замков механической разблокировки, <i>шт.</i> Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, <i>шт.</i> Винт крепления крышки M5×16, <i>шт.</i> Шайба пружинная 5, <i>шт.</i>	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт.	
Основное оборудование: Балка привода с крышкой, <i>шт.</i> Ключи замков механической разблокировки, <i>шт.</i> Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, <i>шт.</i> Винт крепления крышки М5×16, <i>шт.</i> Шайба пружинная 5, <i>шт.</i> Стяжка неоткрывающаяся 100 мм, <i>шт.</i>	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт. Эксплуатационная документация: Руководство по эксплуатации, экз.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт. Эксплуатационная документация: Руководство по эксплуатации, экз. Паспорт, экз. Ящик №2 «Ротор 1», ящик №3 «Ротор 2»	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт. Втулка кабельная Ø16, шт. Эксплуатационная документация: Руководство по эксплуатации, экз. Паспорт, экз. Ящик №2 «Ротор 1», ящик №3 «Ротор 2»	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт. Эксплуатационная документация: Руководство по эксплуатации, экз. Паспорт, экз. Ящик №2 «Ротор 1», ящик №3 «Ротор 2» Основное оборудование: Секция ротора с элементами крепления, шт.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт. Эксплуатационная документация: Руководство по эксплуатации, экз. Паспорт, экз. Ящик №2 «Ротор 1», ящик №3 «Ротор 2» Основное оборудование: Секция ротора, шт.	
Основное оборудование: Балка привода с крышкой, <i>шт.</i> Ключи замков механической разблокировки, <i>шт.</i> Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, <i>шт.</i> Винт крепления крышки М5×16, <i>шт.</i> Шайба пружинная 5, <i>шт.</i> Стяжка неоткрывающаяся 100 мм, <i>шт.</i> Запасные части и материалы: Площадка самоклеящаяся, <i>шт.</i> Заглушка Ø10 синяя, <i>шт.</i> Втулка кабельная Ø16, <i>шт.</i> Эксплуатационная документация: Руководство по эксплуатации, <i>экз.</i> Паспорт, <i>экз.</i> Ящик №2 «Ротор 1», ящик №3 «Ротор 2» Секция ротора с элементами крепления, <i>шт.</i> Секция ротора, <i>шт.</i> Полумуфта, <i>шт.</i>	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт. Эксплуатационная документация: Руководство по эксплуатации, экз. Паспорт, экз. Ящик №2 «Ротор 1», ящик №3 «Ротор 2» Основное оборудование: Секция ротора, шт.	
Основное оборудование: Балка привода с крышкой, шт. Ключи замков механической разблокировки, шт. Сборочно-монтажные принадлежности: Заглушка Ø10 синяя, шт. Винт крепления крышки М5×16, шт. Шайба пружинная 5, шт. Стяжка неоткрывающаяся 100 мм, шт. Запасные части и материалы: Площадка самоклеящаяся, шт. Заглушка Ø10 синяя, шт. Втулка кабельная Ø16, шт. Эксплуатационная документация: Руководство по эксплуатации, экз. Паспорт, экз. Ящик №2 «Ротор 1», ящик №3 «Ротор 2» Основное оборудование: Секция ротора с элементами крепления, шт. Секция ротора, шт. Полумуфта, шт. Сборочно-монтажные принадлежности:	

 $^{^1}$ Электроприводы исполнительных устройств турникета гальванически развязаны и должны иметь индивидуальные источники питания.

² Максимальная в случае перегрузки электропривода.

³ Габаритные размеры турникета показаны на рис. 1.

	Болт M8×12, <i>шт</i> .	
	Болт M8×14, <i>шт</i>	
	Шайба пружинная 8, <i>шт</i> .	
	Заглушка Ø16, <i>шт</i>	
	к №4, ящик №5 «Формирователи проходов» 2, в каждом ящик	e:
Осно	овное оборудование:	
	Секция формирователя прохода левая с блоком индикации и кабелем в сборе, шт	
	Секция формирователя прохода правая с блоком индикации и кабелем в сборе, шт.	
	Балка опорная, шт.	1
Ящи	к №6 «Стойка разделителя» 1, в нем	и:
Осно	вное оборудование:	
	Секция разделителя, шт.	
	Верхняя балка разделителя, шт.	
	Нижняя опора роторов, шт.	
	Фланец опорный нижнего узла вращения, шт.	
	Вставка фторопластовая нижнего узла вращения, шт.	
	Шайба скольжения нижнего узла вращения, <i>шт.</i>	
	Пульт дистанционного управления с кабелем длиной 7 м ¹ , <i>шт.</i>	
	Кабельный канал для подводки кабелей снизу, шт	1
Сбор	очно-монтажные принадлежности:	
	Винт M6×16, <i>шт</i> .	
	Шайба 6, <i>шт.</i>	
	Шайба пружинная 6, <i>шт</i> .	
	Болт M8×16, <i>шт</i> .	
	Болт M8×25, <i>шт</i> .	
	Шайба 8, <i>шт.</i>	
	Шайба пружинная 8, <i>шт</i> .	
	Гайка M10, <i>шт</i> .	
	Шайба 10, <i>шт</i> .	
	Шайба пружинная 10, <i>шт</i>	
	Пластина, шт.	
	Заглушка Ø16, <i>шт</i> .	
_	Шаблон из ДВП для разметки установочной поверхности, <i>шт.</i>	1
	сные части и материалы:	
	глушка Ø16, <i>шт</i>	
	глушка Ø38, <i>шт</i>	
	глушка 60×30, <i>шт</i> .	
	аска порошковая RAL5010, <i>уп</i> .	
	аска порошковая RAL7035, <i>уп.</i>	
Ш	веллер для кабелей, <i>шт</i>	2
4.2	Дополнительное оборудование и монтажные принадлежности,	
	поставляемые по отдельному заказу	
Теуш	ические данные дополнительного оборудования приведены в эксплуатационно	ъй
	ические данные дополнительного осорудования приведены в эксплуатационноми. иентации, поставляемой с указанным оборудованием.	וענ
-	олнительное оборудование:	
	ыша турникета PERCo-RTC-20 , <i>к-т</i>	1
Ce	екции и элементы ограждения полноростового <i>PERCo-MB-16</i> в необходимом кол-в	ر عو
Кэ	литка полноростовая PERCo-WHD-16 , <i>к-т</i>	1
	1 турникета 24V / 5,5A, <i>шт.</i>	
	1 ΠΠΠ 12V / 2A, <i>шт.</i>	
	тройство РУ ¹ , <i>к-т</i>	
, ,	· [· · - · - · · · · · · · · · · · ·	_

 $^{^{1}}$ По отдельному заказу возможна поставка ПДУ с кабелем длиной до 40 м.

Дополнительные монтажные принадлежности:

Рама монтажная PERCo-RF-20 , <i>шт.</i>	1
Анкер PFG IR 10-15 с болтом M10×60 («SORMAT», Финляндия), <i>шт.</i>	
Анкер PFG IR 16-25 с болтом M16×100 («SORMAT», Финляндия), шт	2
Анкер PEG IR 10-15 с болтом M10x60 для кабельного канала иит	2

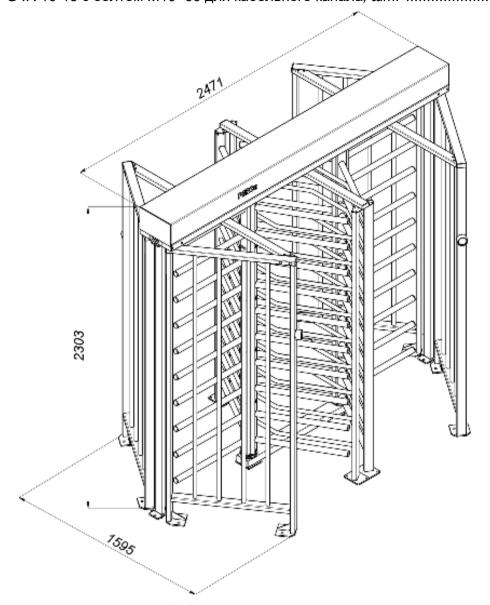
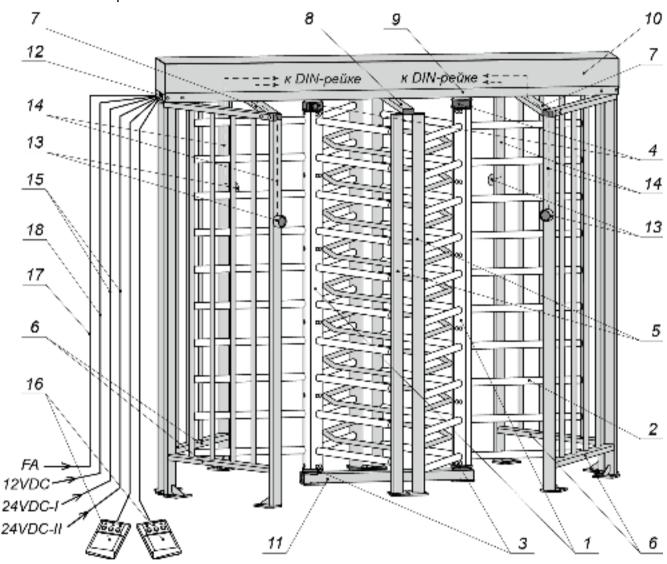


Рисунок 1. Габаритные размеры турникета

5 УСТРОЙСТВО И РАБОТА

5.1 Основные особенности изделия

- Турникет состоит из двух независимых друг от друга ИУ, каждое из которых представляет собой полноценный полноростовый турникет. В сравнении с использованием двух аналогичных турникетов *PERCo-RTD-16* турникет *PERCo-RTD-20* позволяет сэкономить минимум 25% пространства.
- Возможность двух вариантов эксплуатации каждого из двух ИУ турникета в качестве отдельного самостоятельного преграждающего устройства, управление которым осуществляется вручную оператором с помощью ПДУ (устройства РУ), либо в качестве элемента СКУД, при этом управление осуществляется при помощи внешнего контроллера СКУД автоматически.


¹ Комплект устройства РУ состоит из приемника, подключаемого к плате управления турникета, и передатчиков в виде брелоков с дальностью действия до 40 м.

- Каждое из двух ИУ турникета является нормально закрытым преграждающим устройством. При отключении источника питания его ротор блокируется в исходном положении.
- Высокая коррозионная стойкость конструкции турникета обеспечивается комбинированным покрытием всех элементов конструкции цинком и порошковой краской, что гарантирует длительный срок службы турникета в условиях неблагоприятного воздействия внешней среды; кроме того, модификации турникета с индексом «S» комплектуются роторами, секции которых полностью выполнены из нержавеющей стали.
- Высокая прочность полимерного порошкового покрытия обеспечивает сохранность элегантного внешнего вида в условиях интенсивной эксплуатации.
- Повышенная комфортность прохода через турникет модификации **PERCo-RTD-20.1** достигается за счет автоматического поворота створок ротора каждого ИУ при помощи электропривода (независимого для каждого из двух ИУ турникета). В модификации **PERCo-RTD-20.2** привод механического доворота каждого ИУ турникета позволяет в конце прохода створкам ротора автоматически доворачиваться до исходного положения.
- Дополнительная установка ДКЗП и сирены дает возможность звукового оповещения о попытке несанкционированного прохода через турникет.
- Турникет имеет встроенные светодиодные индикаторы режима работы обоих направлений для каждого ИУ турникета, также имеется возможность подключения дополнительных выносных световых индикаторов.
- Имеется возможность организации шлюза в каждом ИУ турникета (шлюз пространство зоны прохода ИУ, ограниченное с обеих сторон) для реализации режима усиленного контроля доступа при проходе на объект.
- Возможность установки турникета на слабом грунте путем дополнительного использования при его монтаже специальной монтажной рамы *PERCo-RF-20*.
- Конструкция турникета предусматривает возможность установки крыши *PERCo-RTC-20*, поставляемой опционально, для дополнительной защиты его от атмосферных осадков, а также защиты от несанкционированного проникновения путем перелезания через турникет.
- Конструкция турникета предусматривает возможность его монтажа совместно с полноростовой калиткой *PERCo-WHD-16*, поставляемой опционально, которую можно использовать в качестве аварийного или эвакуационного выхода с дистанционным управлением в зоне контроля, а также для проноса негабаритных грузов через зону контроля.
- Конструкция турникета предусматривает возможность его монтажа совместно с секциями полноростового ограждения *PERCo-MB-16*, поставляемыми опционально, для оптимального формирования и ограничения зон контроля. В случае необходимости ограждение *PERCo-MB-16* может быть дополнительно оборудовано барьерными накладками для дополнительной защиты от перелезания и упорами для усиления конструкции.
- Конструкцией турникета предусмотрена подсветка каждой из зон прохода парой светодиодных ламп.
- Конструкция турникета предусматривает подводку кабелей питания и управления от внешних устройств сверху, через балку привода. В случае необходимости подводки кабелей снизу (через установочную поверхность) предусмотрена возможность монтажа дополнительного кабельного канала (имеется в стандартном комплекте поставки), выполненного в общем дизайне с турникетом.
- Предусмотрена возможность установки до трех турникетов в ряд с верхней транзитной прокладкой кабелей; при этом сохраняется возможность использования стандартных крыш *PERCo-RTC-20*.
- Четыре встроенных замка механической разблокировки в балке привода (по два замка на каждое ИУ турникета) позволяют при необходимости (например, в случае отключения электропитания) оперативно разблокировать ИУ для свободного прохода в нужном направлении с помощью ключа.

- Имеется возможность дистанционной разблокировки каждого ИУ турникета для свободного прохода в обоих направлениях при возникновении чрезвычайных ситуаций по команде от устройства аварийной разблокировки *Fire Alarm* (например, от аварийной кнопки или прибора пожарной сигнализации).
- На турникет подается безопасное для человека напряжение питания, не более 30 В.

5.2 Устройство турникета

Устройство турникета показано на рис. 2. Номера позиций в руководстве указаны в соответствии с рис. 2.

Рисунок 2. Устройство турникета:

1 – роторы; 2 – секция ротора¹; 3 – нижние узлы вращения; 4 – муфтовые соединения²; 5 – секции разделителя; 6 – секции формирователей прохода (левые и правые);

7 – балки опорные;8 – верхняя балка разделителя; 9 – балка привода;

10 – крышка балки привода;11 – нижняя опора роторов;12 – отверстия для ввода кабелей; 13 – блоки индикации³; 14 – кабели индикации³;

15 – кабели питания ИУ №1 и №2 турникета⁴; 16 – пульты ДУ №1 и №2 с кабелями; 17 – кабель устройства *Fire Alarm*⁴; 18 – кабель питания ЛПП⁴

¹ Соединение секций ротора показано на рис. 19.

² Муфтовое соединение показано на рис. 18.

³ Поставляются в сборе с секциями формирователей прохода.

⁴ Не входит в стандартный комплект поставки.

Турникет состоит из двух независимых друг от друга ИУ, каждое из которых представляет собой полноценный полноростовый турникет. Каждое ИУ состоит из:

- ротора (1), состоящего из трех секций (2);
- формирователя прохода, состоящего из левой и правой секций (6) и опорной балки (7);
- двух блоков индикации (13);
- ПДУ (16) с кабелем;
- внутренних узлов, обеспечивающих работу ИУ (исполнительный механизм, блок управления и др.).

Общими для обоих ИУ являются:

- нижняя опора роторов (11);
- разделитель, состоящий из двух секций (5) и верхней балки (8);
- балка привода (9) с крышкой (10).

Ротор (1) представляет собой сборную конструкцию и поставляется в виде трех отдельных секций (2). Каждая секция выполняет роль преграждающей створки турникета и включает в себя вертикальный ряд из десяти горизонтальных преграждающих планок. Оба ротора своей нижней частью вставляются в нижние узлы вращения (3), смонтированные в нижней опоре (11), верхней частью через муфтовое соединение (4) крепятся к валам исполнительных механизмов. Нижняя опора через два монтажных отверстия крепится анкерными болтами к установочной поверхности.

Формирователь прохода состоит из двух секций (6): левой и правой, соединенных сверху опорной балкой (7). Каждая секция имеет две вертикальные опорные стойки на фланцах. Каждый фланец имеет два монтажных отверстия для крепления анкерными болтами к установочной поверхности. На наружных опорных стойках секций формирователя прохода установлены два блока индикации (13) со встроенными световыми индикаторами, от которых внутри стоек вверх протянуты кабели индикации (14). Обе секции формирователя вместе с одной из секций разделителя образуют зону прохода через турникет. При необходимости на внешние опорные стойки секций формирователя прохода могут монтироваться считыватели СКУД или другое дополнительное оборудование.

Балка опорная (7) связывает секции формирователя прохода и служит опорой для балки привода (9), внутри опорной балки прокладываются кабели индикации и при необходимости кабели от считывателей СКУД и др. оборудования, закрепляемого на секциях формирователя прохода.

Разделитель турникета состоит из двух секций (5), соединенных сверху между собой верхней балкой разделителя (8). Каждая секция представляет собой конструкцию из двух вертикальных стоек, соединенных фигурными горизонтальными планками. Верхняя балка разделителя также служит центральной опорой для балки привода (9). Стойки секций разделителя через отверстия в нижних фланцах крепятся анкерными болтами к установочной поверхности.

Балка привода (9) связывает элементы турникета в единую конструкцию, а также служит для размещения основных механических и электрических узлов, обеспечивающих работу обоих ИУ. Снизу на балке привода расположены четыре замка механической разблокировки (по два на каждое ИУ), доступ к которым возможен снизу со стороны зоны прохода. Каждый из замков позволяет осуществлять разблокировку вращения ротора (1) в том направлении, со стороны которого он расположен, независимо от другого направления. Балка привода закрывается сверху крышкой (10), которая фиксируется со стороны нижней поверхности балки шестью винтами. После фиксации отверстия винтов закрываются пластиковыми заглушками.

Каждое ИУ имеет независимые и идентичные исполнительный механизм и блок управления.

Исполнительный механизм каждого ИУ смонтирован на отдельном основании и располагается внутри балки привода. Вал исполнительного механизма через муфтовое соединение (4), состоящее из двух полумуфт, соединен с валом ротора ИУ.

В модификации турникета **PERCo-RTD-20.1** в исполнительных механизмах применены электроприводы роторов (см. рис. 3). Электропривод в режиме однократного прохода после начала прохода через турникет и поворота вручную ротора на угол >12° автоматически доворачивает ротор в том же направлении до исходного (закрытого) положения ротора. В режиме свободного прохода электропривод включается только для торможения створок около исходного положения.

В модификации турникета *PERCo-RTD-20.2* в исполнительных механизмах применены механические приводы роторов (см. рис. 4). При проходе через турникет после поворота вручную ротора на угол >60° исполнительный механизм за счет энергии пружин также автоматически доворачивает ротор до исходного положения.

При проходе через турникет в разрешенном направлении и повороте ротора на угол >60° возможность обратного вращения створок ротора блокируется в обеих модификациях исполнительного механизма.

Блок управления (см. рис. 3 и 4) каждого ИУ выполнен в виде отдельной платы в закрытом пластиковом корпусе. Он осуществляет управление ИУ в соответствии с алгоритмом и поступающими командами управления.

В каждом блоке управления установлен микроконтроллер, который обрабатывает поступающие команды (контакты *Unlock A, Stop, Unlock B* и *Fire Alarm*), анализирует состояние оптических датчиков поворота, датчиков замков и ДКЗП (контакт *Detector*) и на их основе формирует команды на свой исполнительный механизм турникета. Также он формирует сигналы для внешних устройств: для управления индикацией на ПДУ (*RC Led A, RC Led Stop* и *RC Led B*), о фактах поворота ротора в соответствующем направлении (*PASS A u PASS B*), о возникновении нештатных ситуаций в работе турникета (*Ready*), сигнал тревоги (*Alarm*); ретранслирует сигналы о текущем состоянии ДКЗП (*Det Out*).

Для удобства подключений все внешние соединения блока управления выведены на DINрейку (см. рис. 3 и 4, табл. 1), расположенную на кронштейне над блоком управления внутри балки привода. Подводка кабелей от внешних устройств к DIN-рейкам возможна двумя способами:

- верхняя прокладка кабелей сверху напрямую через отверстия для ввода кабелей (12) в торцах балки привода.
- нижняя прокладка кабелей, заранее проложенных под установочной поверхностью, снизу по кабельному каналу из комплекта поставки.

Для верхней прокладки кабелей используются кабельные втулки из комплекта поставки, неиспользуемые отверстия закрываются пластиковыми заглушками.

Кабельный канал для подводки кабелей снизу прикручивается к установочной поверхности двумя анкерными болтами через отверстия во фланце, а сверху через патрубок крепится к торцу балки привода.

Возможна транзитная прокладка кабелей через балку привода при установке нескольких турникетов в ряд (до 3 турникетов).

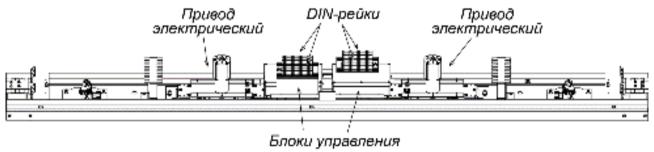


Рисунок 3. Вид балки привода турникета PERCo-RTD-20.1 без крышки

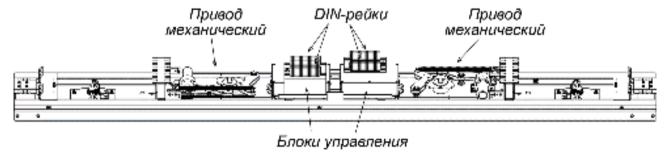


Рисунок 4. Вид балки привода турникета PERCo-RTD-20.2 без крышки

Таблица 1. Назначение контактов DIN-рейки

№ DIN	Контакт	Назначение			
1	+24V				
2	GND	Подключение внешнего ИП			
3	+12V	Подключение питания ДКЗП +12В			
4	DETECTOR	Вход подключения ДКЗП			
5	GND	Общий			
6	FIRE ALARM	Вход управления аварийным открытием прохода. При поставке			
7	GND	установлена перемычка проводом.			
8	RC SOUND	Выход управления звуковой индикацией ПДУ			
9	UNLOCK A	Вход управления открытием направления А			
10	STOP	Вход управления блокировкой прохода			
11	UNLOCK B	Вход управления открытием направления В			
12	RC LED A	Выход индикации разблокировки направления А на ПДУ			
13	RC STOP	Выход индикации блокировки прохода на ПДУ			
14	RC LED B	Выход индикации разблокировки направления В на ПДУ			
15	IMP/POT	Для установки перемычки проводом « <i>IMP/POT</i> » При поставке			
16	GND	перемычка отключена, что соответствует импульсному режиму управления.			
17	+12V	Выход +12В для питания дополнительных устройств			
18	ALARM 1	PLIVORILI RORKRIONOMA CAROLILI			
19	ALARM 2	Выходы подключения сирены			
20	COMMON	бщий для выходов PASS A, PASS B			
21	PASS A	Релейный выход <i>PASS A</i> (проход в направлении A)			
22	PASS B	Релейный выход <i>PASS В</i> (проход в направлении В)			
23	READY	Релейный выход <i>READY</i> (готовность турникета)			
24	DET OUT	Релейный выход <i>DET OUT</i> (состояние ДКЗП)			
25	NO A	Нормально разомкнутый контакт выхода управления внешней индикацией A			
26	LIGHT A	Общий контакт выхода управления внешней индикацией А			
27	NC A	Нормально замкнутый контакт выхода управления внешней индикацией A			
28	NO B	Нормально разомкнутый контакт выхода управления внешней индикацией В			
29	LIGHT B	Общий контакт выхода управления внешней индикацией В			
30	NC B	Нормально замкнутый контакт выхода управления внешней индикацией В			
31	+12V				
32	LED A	Выходы управления блоком индикации секции формирователя			
33	GND	прохода для направления А			
34	+12V				
35 LED B		Выходы управления блоком индикации секции формирователя			
36	GND	прохода для направления В			
37	U1	Danier - 140 000			
38	U2	Подключение ИП ЛПП			

5.3 Устройства для управления турникетом

Управление каждой из двух частей турникета может осуществляться с помощью следующих устройств:

- ПДУ (устройства РУ), при работе турникета в качестве отдельного самостоятельного преграждающего устройства,
- контроллера СКУД, при работе турникета в составе СКУД.

Внимание!

В случае управления турникетом от контроллера СКУД пульт ДУ должен быть подключен к контроллеру СКУД, одновременное подключение контроллера СКУД и ПДУ напрямую к турникету недопустимо.

5.3.1 Пульт дистанционного управления

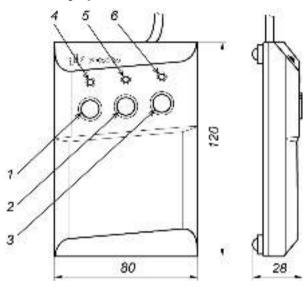


Рисунок 5. Общий вид и габаритные размеры ПДУ (16)

1, 2, 3 – кнопки **LEFT**, **RIGHT**, **STOP** для подачи команд управления; 4, 6 – зеленые индикаторы *«Left»*, *«Right»*; 5 – красный индикатор *«Stop»*

ПДУ (16) выполнен в виде небольшого настольного прибора с гибким многожильным кабелем в корпусе из ударопрочного АБС-пластика.

ПДУ предназначен для подачи команд оператором при ручном режиме управления турникетом. Общий вид ПДУ показан на рис. 5.

На лицевой панели ПДУ расположены три кнопки для подачи команд управления турникетом. Средняя кнопка **STOP** предназначена для подачи команды *«Запрет прохода»*. Левая и правая кнопки **LEFT**, **RIGHT** предназначены для подачи команды разблокировки турникета в выбранном направлении.

Над кнопками расположены светодиодные индикаторы состояния поворотного механизма турникета. Красный индикатор *«Stop»* указывает на то, что оба направления прохода заблокированы. Доступные команды управления и индикация на ПДУ для импульсного и потенциального режимов управления указаны в табл. 11, 12 и 13.

5.3.2 Режимы управления турникетом

Возможны два режима управления для каждого ИУ турникета — импульсный и потенциальный. В обоих режимах управление осуществляется подачей команд (т.е. комбинацией управляющих сигналов) на штатные входы управления: *Unlock A*, *Stop* и *Unlock B* и специальный вход управления *Fire Alarm*. В зависимости от выбранного режима меняется алгоритм подачи команд управления.

Режим управления определяется наличием на DIN-рейке перемычки проводом *«IMP / POT»*. Если перемычка отсутствует – импульсный режим управления, перемычка установлена – потенциальный режим управления.

Импульсный режим управления ИУ используется для управления с помощью ПДУ, устройства РУ или контроллера СКУД, выходы которого поддерживают импульсный режим управления.

Минимальная длительность входного сигнала, при которой возможно изменение режима работы ИУ турникета, составляет 100 мс. Время ожидания прохода равно 5 с и не зависит от длительности управляющего сигнала (импульса).

Режимы работы ИУ при данном режиме управления приведены в табл. 11 и 12, алгоритм подачи команд управления приведен в Приложении 1.

Потенциальный режим управления ИУ используется для управления с помощью контроллера СКУД, выходы которого поддерживают потенциальный режим управления.

Минимальная длительность входного сигнала, при которой возможно изменение режима работы, составляет 100 мс. Время ожидания прохода равно длительности сигнала низкого уровня (т.е. если к моменту начала совершения прохода в разрешенном направлении на входе для данного направления присутствует сигнал низкого уровня, то турникет в данном направлении останется разблокированным).

При поступлении сигнала низкого уровня на вход *Stop* оба направления блокируются на все время его присутствия независимо от уровней сигналов на входах *Unlock A* и *Unlock B*. При снятии сигнала низкого уровня с входа *Stop* направления переходят в режим согласно уровням сигналов на входах *Unlock A* и *Unlock B*.

Примечание:

Для организации однократных проходов при потенциальном режиме управления рекомендуется снимать управляющий сигнал низкого уровня со входа управления *Unlock A | Unlock B* при активизации релейного выхода *PASS A / PASS B* соответствующего направления.

Режимы работы ИУ при данном режиме управления приведены в табл. 13, алгоритм подачи команд управления приведен в Приложении 2.

5.3.3 Алгоритм работы ИУ при импульсном режиме

Алгоритм работы ИУ турникета при импульсном режиме управления в режиме работы «Однократный проход» в одном из направлений:

- 1. От устройства управления (ПДУ, устройство РУ, контроллер СКУД) на входы платы управления поступает команда (комбинация управляющих сигналов) на совершение однократного прохода в одном из направлений.
- 2. Микроконтроллер, установленный в блоке управления, обрабатывает полученную комбинацию сигналов и формирует команду механизму управления турникета на разблокировку поворотного механизма. Начинается отсчет времени удержания стопорного узла ИУ турникета в разблокированном состоянии.
- 3. Механизм управления разблокирует поворотный механизм для поворота в выбранном направлении. Становится возможным проход в этом направлении.
- 4. Если вращение ротора не началось, то команда на блокировку поворотного механизма формируется по истечении времени удержания в разблокированном состоянии (по умолчанию 5 секунд с момента получения команды).
- 5. При совершении прохода угол поворота ротора отслеживается микроконтроллером с помощью оптических датчиков механизма управления. При повороте на угол более 67° фиксируется факт прохода. Активизируется один из релейных выходов *PASS A* или *PASS B*, соответствующий направлению прохода. Микроконтроллер формирует команду механизму управления на блокировку поворотного механизма турникета.
- 6. Для модели турникета **PERCo-RTD-20.1** после поворота ротора на угол более 12° включается электропривод для автоматического доворота ротора до исходного положения в направлении прохода.
- 7. После совершения прохода и доворота ротора до исходного положения (поворота на 120°), поворотный механизм турникета блокируется. Релейный выход *PASS A / PASS В* нормализуется.
- 8. ИУ турникета готово для совершения следующего прохода.

5.3.4 Параметры управляющих сигналов

Примечание:

Для создания сигнала высокого уровня на всех входных контактах (*Unlock A, Stop, Unlock B, Fire Alarm* и *Detector*) в блоке управления используются резисторы с сопротивлением 1 кОм, подключенные к шине питания + 5 В.

Штатные входы управления: клеммы 9...11 DIN-рейки (*Unlock A, Stop* и *Unlock B*).

Специальный вход управления: клемма 6 DIN-рейки (*Fire Alarm*).

Управление ИУ турникета осуществляется подачей на штатные входы управления *Unlock A, Stop* и *Unlock B* сигнала низкого уровня относительно контакта *GND*, при этом управляющим элементом могут быть нормально разомкнутый контакт реле или схема с открытым коллекторным выходом.

Аварийная разблокировка ИУ турникета осуществляется снятием со специального входа управления *Fire Alarm* сигнала низкого уровня относительно контакта *GND*, при этом управляющим элементом может быть нормально замкнутый контакт реле или схема с открытым коллекторным выходом (см. рис. 6 и 7).

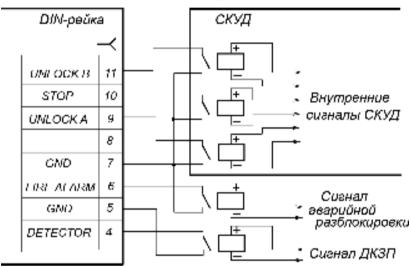


Рисунок 6. Управляющие элементы: нормально разомкнутые контакты реле

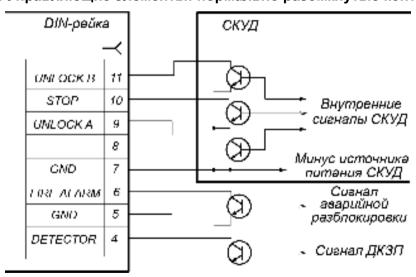


Рисунок 7. Управляющие элементы: схема с открытыми коллекторными выходами

При появлении сигнала низкого уровня на контакте *Fire Alarm*:

- при импульсном режиме управления ИУ турникета переходят в режим *«Запрет прохода»*;
- при потенциальном режиме управления направления прохода через ИУ турникета переходят в режим согласно уровням сигналов на входах *Unlock A, Unlock B* и *Stop*.

Факт активизации ДКЗП отслеживается по снятию со входа *Detector* платы управления сигнала низкого уровня относительно контакта *GND*, при этом управляющим элементом может быть нормально замкнутый контакт реле или схема с открытым коллекторным выходом.

Управляющий элемент должен обеспечивать следующие характеристики сигналов: управляющий элемент – контакт реле (рис. 6):

(с учетом сопротивления кабеля подключения), *Ом* не более 300 управляющий элемент – схема с открытым коллекторным выходом (рис. 7):

напряжение на замкнутом контакте

(сигнал низкого уровня на входе в блок управления), В...... не более 0.8

5.3.5 Подключение ПДУ

Для управления ИУ турникета от ПДУ (устройства РУ) рекомендуется установить импульсный режим управления (см. разд. 5.3.2). ПДУ подключается к контактам клемм 7...14 DIN-рейки GND, RC Sound, Unlock A, Stop, Unlock B, RC Led A, RC Stop, и RC Led B в соответствии со схемой электрических соединений турникета (см. рис. 25).

Примечания:

- Приемник устройства РУ подключается к контактам *GND*, *Unlock A*, *Stop* и *Unlock B* DIN-рейки, питание приемника подключается к контакту +12V DIN-рейки.
- Управление ИУ турникета с помощью устройства РУ аналогично управлению от ПДУ. Кнопки на брелоке устройства РУ выполняют те же функции, что и на ПДУ.

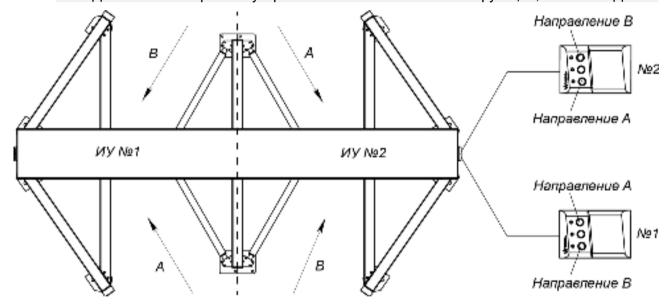


Рисунок 8. Стандартная ориентация ПДУ относительно турникета (вид сверху, роторы условно не показаны)

Таблица 2. Подключение проводов кабеля ПДУ к контактам DIN-рейки для стандартной ориентации ПДУ

Назначение	№ контакта DIN-рейки	Стандартная о	риентация ПДУ
контакта	(для ИУ №1 и №2)	Nº1	Nº2
GND	7	черный	черный
RC SOUND	8	коричневый	коричневый
Unlock A	9	белый	зеленый
Stop	10	синий	синий
Unlock B	11	зеленый	белый
RC Led A	12	желтый	красный
RC Stop	13	оранжевый	оранжевый
RC Led B	14	красный	желтый

Стандартная ориентация ПДУ относительно ИУ №1 и №2 турникета изображена на рис. 8. Соответствующий ей порядок подключения ПДУ к DIN-рейкам турникета описан в табл. 2. При необходимости поменять местами расположение кнопок **LEFT** и **RIGHT** на одном из пультов ДУ нужно поменять между собой места подключения белого и зеленого (*Unlock A* и *Unlock B*), а также желтого и красного (*RC Led A* и *RC Led B*) проводов кабеля этого ПДУ.

5.3.6 Устройство Fire Alarm

Для экстренной разблокировки турникета при возникновении аварийной ситуации предусмотрена возможность подключения к ИУ турникета устройства, подающего команду аварийной разблокировки (далее – устройство *Fire Alarm*), например, аварийной кнопки или прибора пожарной сигнализации.

Подключение устройства *Fire Alarm* производится к контактам клемм 6 и 7 DIN-рейки (*Fire Alarm* и *GND*) согласно рис. 25. Если устройство, подающее команду аварийной разблокировки, не используется, то необходимо между этими контактами установить перемычку проводом (обе установлены при поставке). При использовании одного выхода устройства *Fire Alarm* для обоих ИУ турникета применяется параллельная схема подключения входов *FA* с учетом полярности.

При снятии сигнала низкого уровня с входа ИУ *Fire Alarm* данное ИУ разблокируется в обоих направлениях прохода на все время отсутствия сигнала, другие команды управления ИУ при этом игнорируются.

5.3.7 Управление от контроллера СКУД

Для управления ИУ турникета от контроллера СКУД производства компании **PERCo** рекомендуется выбрать потенциальный режим управления (см. разд. 5.3.2).

Подключение контроллера СКУД к ИУ турникета производится с помощью кабеля, подсоединяемого к соответствующим контактам клемм DIN-рейки в соответствии с рис. 25:

- выходы контроллера к контактам GND, Unlock A, Stop и Unlock B;
- входы контроллера к контактам Common, PASS A, PASS B, Ready и Det Out.

5.4 Дополнительные устройства, подключаемые к турникету

Внимание!

При подключении дополнительных устройств следует учитывать, что блок управления выдает напряжение для их питания 12±2 В при суммарной нагрузке всех подключенных устройств не более 300 мА.

5.4.1 Параметры сигналов релейных выходов

Pene «PASS A» (контакты 21 PASS A и 20 Common), «PASS B» (контакты 22 PASS В и 20 Common), «Ready» (контакты 23 Ready и 20 Common), «Detector» (контакты 24 Det Out и 20 Common) и «Alarm» (контакты 18 Alarm 1 и 19 Alarm 2) имеют нормально-разомкнутые контакты.

При этом общий для этих реле контакт *Common* не соединен с минусом ИП турникета. В исходном (неактивном) состоянии при включенном питании контакты реле *«PASS A», «PASS В», «Ready»* и *«Detector»* замкнуты (на обмотку реле подано напряжение), а контакты реле *«Alarm»* разомкнуты (напряжение на обмотку реле не подано).

Выходные каскады для «PASS A», «PASS B», «Ready», «Det Out» и «Alarm» – контакты реле со следующими характеристиками сигналов (см. рис. 9):

максимальное коммутируемое напряжение постоянного тока, В	42
максимальный коммутируемый ток, А	0,25
сопротивление замкнутого контакта, Ом	

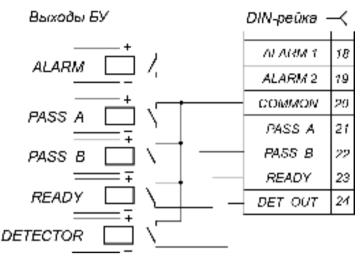


Рисунок 9. Выходные каскады для «PASS A», «PASS B», «Ready», «Det Out» и «Alarm»

5.4.2 ДКЗП и сирена

Внимание!

Установка ДКЗП на турникет производится только на заводе-изготовителе.

Подключение ДКЗП производится к контактам 3...5 (+12V, Detector, GND) DIN-рейки, а сирены к контактам 17 и 19 (+12V, Alarm 2). Схема подключения представлена на рис. 25.

Если при заблокированном по команде *«Запрет прохода»* ИУ турникета (табл. 11, 12 и 13) поступает сигнал от ДКЗП, то формируется сигнал *Alarm*. Снятие сигнала происходит через 5 с после нормализации ДКЗП или при поступлении любой команды от ПДУ или иного устройства управления.

Сигнал от ДКЗП игнорируется на время санкционированной разблокировки ИУ турникета в любом (одном или обоих направлениях), а также в течение 3 с после подачи команды «Запрет прохода».

На клемму 24 *Det Out* DIN-рейки относительно клеммы 20 *Common* (см. рис. 25) всегда транслируется сигнал о текущем состоянии ДКЗП. (см. также рис. 7).

5.4.3 Выносные блоки индикации

Выносные блоки индикации подключаются к контактам 25...30 DIN-рейки. При этом реле «Light A» («Light B») активизировано (на его обмотку подано напряжение), когда горит соответствующий данному направлению прохода зеленый индикатор на блоке индикации ИУ турникета, и нормализовано (на его обмотку напряжение не подано), когда горит соответствующий данному направлению прохода красный индикатор. Выходные каскады для Light A и Light B — перекидные контакты реле (см. рис. 10) со следующими характеристиками сигналов:

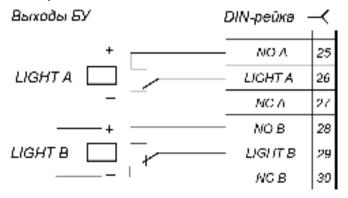


Рисунок 10. Выходные каскады для «Light A» и «Light B»

5.5 Нештатные ситуации в работе турникета

Турникет дает возможность получения информации о возникновении следующих нештатных ситуаций в работе каждого из его ИУ:

- 1. Ротор не вернулся в исходное положение в течение 10 с после подачи команды «Запрет прохода». По каким-либо причинам ротор находится в положении, отличном от исходного. В этом положении его блокировка по команде «Запрет прохода» невозможна.
- 2. Длительность прохода через ИУ превышает максимальное время, отведенное на проход (10 с). По каким-либо причинам проход не завершен (ротор после начала санкционированного прохода не возвращен в исходное положение).
- 3. Срабатывание ДКЗП после подачи команды «Запрет прохода» происходит, как правило, при попытке несанкционированного прохода (входа в зону контроля) (см. разд. 5.4.2).
- 4. Электропривод ИУ испытывает перегрузку длительностью более 2 с (для PERCo-RTD-20.1). Для предотвращения выхода из строя электропривода и электроники предусмотрен режим защиты от перегрузки электропривода. При превышении силы тока, подаваемого на привод, более установленной нормы в течение >2 секунд блок управления снимает управляющие сигналы с электропривода, вращающее усилие привода на ротор прекращается. Через 2 с режим защиты снимается, подача управляющих сигналов и работа электропривода возобновляется.
- 5. Электропривод ИУ испытывает перегрузку четыре раза подряд (для **PERCo-RTD-20.1**). При повторении перегрузки электропривода четыре раза подряд при одном довороте ротора до исходного положения турникет переходит в аварийный режим, и работа электропривода прекращается. Выход из аварийного режима происходит через 20 с или после приведения ротора в исходное положение. После выхода из аварийного режима ротор совершит доворот до исходного положения. Сброса управляющей команды при аварийном режиме не происходит.
- 6. Выход из строя оптических датчиков поворота или датчиков замков. Для проверки работоспособности датчиков переведите турникет в тестовый режим и выполните действия в соответствии с предлагаемыми тестами (см. разд. 8.8).

Примечание:

При неисправности датчика замка при нахождении ротора турникета в исходном положении возможно срабатывание режима перегрузки.

Состояние выходов *«Ready»* и *«Alarm»*, а также наличие звукового сигнала на ПДУ для данного ИУ в каждом из указанных случаев описаны в табл. 3.

Нештатная Состояние Состояние Nº Звуковой сигнал ПДУ выхода «Ready» выхода «Alarm» ситуация Ротор не вернулся в Звучит непрерывный Активизация Активизация выхода. исходное положение сигнал зуммера. выхода. Нормализация в течение 10 с после Снятие сигнала – после Нормализация через 5 с после подачи команды приведения ротора в приведения ротора в после приведения «Запрет прохода». исходное положение. ротора в исходное исходное положение положение. или после любой команды. Срабатывание ДКЗП Нет сигнала. Нет активизации. Активизация выхода. после подачи Нормализация – при команды «Запрет нормализации ДКЗП прохода». после любой

Таблица 3. Нештатные ситуации в работе ИУ турникета

команды или через

5 c.

Nº	Нештатная звуковой сигнал ПДУ		Состояние выхода «Ready»	Состояние выхода <i>«Alarm»</i>	
3	Длительность прохода превышает максимальное время, отведенное на проход (10 с).	Звучит непрерывный сигнал зуммера. Снятие сигнала – после приведения ротора в исходное положение.	Активизация выхода. Нормализация – после приведения ротора в исходное положение.	Нет активизации.	
4	Электропривод испытывает перегрузку длительностью более 2 с (<i>PERCo-RTD-20.1</i>).	Нет сигнала.	Активизация выхода. Нормализация – после снятия режима перегрузки.	Нет активизации.	
5	Электропривод испытывает перегрузку четыре раза подряд при одном довороте ротора (<i>PERCo-RTD-20.1</i>).	Звучит непрерывный сигнал зуммера. Снятие – через 20 с или после приведения ротора в исходное положение.	Активизация выхода. Нормализация – через 20 с или после приведения ротора в исходное положение.	Нет активизации.	
6	Выход из строя оптических датчиков поворота и датчиков замков.	Звуковые сигналы описаны в алгоритме проверки работоспособности турникета в тестовом режиме (см. разд. 8.8.2).	Нет активизации.	Нет активизации.	

6 МАРКИРОВКА И УПАКОВКА

Турникет имеет маркировку в виде этикетки, расположенной на внутренней поверхности крышки балки привода. На этикетку нанесены наименование и серийный номер изделия и дата его изготовления.

Также на внутренней поверхности крышки имеется наклейка со схемой подключений турникета и дополнительного оборудования, аналогичная приведенной на рис. 25.

Для доступа к этикетке и наклейке необходимо снять крышку балки привода, выполнив следующие действия:

Внимание!

При снятии и установке крышки балки привода будьте особенно внимательны и аккуратны, предохраняйте ее от падения.

- 1. Выключите ИП турникета и ИП ЛПП и отсоедините их от сети.
- 2. Снимите пластиковые заглушки с шести отверстий, предназначенных для крепления крышки и находящихся на нижней стороне балки привода.
- 3. Отверните шесть винтов М5, фиксирующих крышку балки (см. рис. 20).
- 4. Аккуратно поднимите крышку и снимите ее с балки привода. Работайте вдвоем!
- 5. Уложите крышку на ровную устойчивую поверхность. Допускается временно класть крышку на верхние поперечные элементы турникета или его крыши.

Установка крышки производится в обратном порядке.

Турникет в стандартном комплекте поставки (см. разд. 4.1) упакован в 6 транспортировочных ящиков, которые предохраняют его составные части от повреждений во время транспортирования и хранения. Габаритные размеры ящиков и их вес в стандартном комплекте поставки указаны в паспорте на изделие.

Таблица 4. Габаритные размеры и вес транспортировочных ящиков

№ ящика	№ ящика Габаритные размеры, см	
1	1 263 × 40 × 33 2 217 × 98 × 21	
2		
3	217 × 98 × 21	93
4	225 × 98 × 32	103
5	225 × 98 × 32	103
6	223 × 51 × 140	154

7 МЕРЫ БЕЗОПАСНОСТИ

7.1 Меры безопасности при монтаже

Монтаж турникета должен проводиться лицами, полностью изучившими данное руководство, с соблюдением общих правил выполнения электротехнических и монтажных работ.

Внимание!

- Все работы по монтажу производите только при выключенном и отключенном от сети ИП.
- При монтаже используйте только исправный инструмент.
- Работы по распаковке, установке и перемещению секций изделия, установка балки привода, ее крышки и ротора турникета должны производиться только вдвоем.
- Используйте защитные перчатки во избежание травм.
- При установке и снятии крупногабаритных и массивных деталей турникета будьте особенно внимательны и аккуратны, предохраняйте их от падения.
- Перед первым включением турникета убедитесь в том, что его монтаж выполнен правильно.

Монтаж ИП и другого дополнительного оборудования следует проводить с соблюдением мер безопасности, приведенных в эксплуатационной документации на указанное оборудование.

7.2 Меры безопасности при эксплуатации

При эксплуатации турникета необходимо соблюдать общие правила безопасности при использовании электрических установок.

Запрещается!

- Эксплуатировать турникет в условиях, не соответствующих требованиям разд. 2.
- Эксплуатировать турникет при напряжении питания, отличающемся от указанного в разд. 3.
- Во избежание получения травм вставать на преграждающие планки турникета или каким-либо образом виснуть на них, просовывать руки или ноги между планками во время работы турникета и т.д.

ИП и другое дополнительное оборудование следует эксплуатировать с соблюдением мер безопасности, приведенных в эксплуатационной документации на указанное оборудование.

8 МОНТАЖ

При монтаже турникета соблюдайте меры безопасности, указанные в разд. 7.1.

Внимание!

Предприятие-изготовитель не несет ответственности за повреждения турникета и другого оборудования, а также иной ущерб, нанесенный в результате неправильного монтажа, и отклоняет любые претензии потребителя, если монтаж выполнен с нарушением указаний, приведенных в данном руководстве.

Монтаж турникета является ответственной операцией, от которой в значительной степени зависит работоспособность и срок службы изделия. Монтаж должен выполняться силами не менее двух человек, имеющих квалификацию монтажника не ниже третьего разряда и электрика не ниже третьего разряда. До начала монтажных работ рекомендуется

внимательно изучить данный раздел, а затем просмотреть учебный фильм по монтажу турникета (входит в комплект поставки) и в дальнейшем следовать изложенным в них инструкциям.

При необходимости обращайтесь за консультациями в ближайший сервисный центр компании *PERCo*.

8.1 Особенности монтажа

Турникет необходимо устанавливать на прочные и ровные бетонные (бетон с характеристиками не ниже марки 400, группа прочности В22,5), каменные и т.п. основания, имеющие толщину не менее 150 мм.

Перед монтажом турникета необходимо проверить горизонтальность и плоскостность установочной поверхности и при необходимости выровнять ее. Максимальное допустимое отклонение от плоскостности зоны установки должно быть не более 1,5 мм.

При установке турникета на менее прочное основание следует применять монтажную раму **PERCo-RF-20** или закладные фундаментные элементы размером 500×500×500 мм под все опорные поверхности турникета.

Внимание!

При установке в ряд нескольких турникетов предусматривается необходимость оставлять между ними технологический зазор не менее 30 мм для компенсации погрешностей монтажа, для удобства прокладки кабелей, а также для обеспечения условий монтажа крыш.

Для крепления турникета рекомендуется применять анкерные болты фирмы *«SORMAT»* (см. табл. 5).

Таблица 5. Используемые анкерные болты фирмы «SORMAT»

Типоразмер анкера	Назначение	Диаметр сверла, мм	Глубина сверления, мм	К-во, штук
	Крепление секций (6) формирователей прохода и секций (5) разделителя	16	60	24
PFG IR 16-25 Крепление нижних узлов вращ		25	100	2
IPEGIR III-IN	Крепление кабельного канала для подводки кабелей снизу	16	60	2

Монтаж ИП и другого дополнительного оборудования производите согласно требованиям, приведенным в эксплуатационной документации на указанное оборудование.

8.2 Инструмент и оборудование, необходимые для монтажа

Примечание:

Допускается применение других инструментов, не снижающих требуемое качество монтажных работ.

При выполнении монтажных работ рекомендуется использовать следующие инструменты и оборудование:

- электроперфоратор мощностью 1,2÷1,5 кВт;
- шуруповерт;
- сверла твердосплавные Ø16 мм и Ø25 мм;
- ключ торцовый S17;
- ключи шестигранные SW1,5; SW3; SW4; SW6; SW8; SW14;
- отвертка с крестообразным шлицем №2 длиной 150 мм;
- отвертка с прямым шлицем №5 длиной 150 мм;
- рулетка 3 м;
- уровень строительный;
- динамометр до 10 кгс;
- проволока монтажная 0,5 мм × 2,5 м;
- лента липкая (скотч);
- две стремянки с числом ступеней не менее четырех.

8.3 Допустимые длины кабелей

Кабели, применяемые при монтаже, указаны в табл. 6.

Таблица 6. Кабели, применяемые при монтаже

Nº	Подключаемое оборудование	Макс. длина кабеля, м	Тип кабеля	Сечение, мм², не менее	Пример кабеля
1	МП	10	Двужильный	1,5	AWG 15; ШВВП 2×1,5 двухцветный
'	ип	15	Двужильный	2,5	AWG 13; ШВВП 2×2,5 двухцветный
2	- Устройство Fire Alarm - Дополнительное оборудование, подключаемое к входам или выходам	30	Двужильный	0,2	RAMCRO SS22AF-T 2×0,22 CQR-2
3	ПДУ	40	Восьмижильный	0,2	CQR CABS8 8×0,22c
4	Контроллер СКУД	30	Шестижильный	0,2	CQR CABS6 6×0,22c

8.4 Монтаж турникета

Содержание монтажных операций дано с учетом рекомендаций, приведенных в разд. 8.1. Схема подключения турникета и дополнительного оборудования приведена в разд. 8.9. Рекомендуется соблюдать следующий порядок монтажа турникета и дополнительного оборудования:

- 1. Произведите монтаж источников питания на отведенных для них местах и подключите к ним соответствующие кабели питания.
- 2. Подготовьте установочную поверхность.
- 3. Выполните на установочной поверхности разметку отверстий для монтажа турникета. Используйте шаблон из комплекта поставки, но затем обязательно проверьте истинность расстояний в соответствии с рис. 11.

Примечание:

Одновременно с разметкой для монтажа турникета необходимо сразу проводить разметку для монтажа других устанавливаемых совместно с ним элементов пропускного пункта: секций полноростового ограждения *PERCo-MB-16* и полноростовой калитки *PERCo-WHD-16* (см. Приложение 3).

4. Если для прокладки соединительных кабелей будет использоваться специальный кабельный канал для подводки кабелей снизу (имеется в стандартном комплекте поставки), то следует произвести разметку его установочных отверстий в соответствии со схемой, представленной на рис. 30, а также кабельных каналов непосредственно в установочной поверхности.

Примечание:

размеры, Материал, форма сечения, вариант прокладки (поверхностный, заглубленный, комбинированный), расположение на пропускном пункте и другие характеристики кабельных каналов определяются потребителем, исходя из особенностей пропускного пункта, планировки оборудования эксплуатационных факторов при полном соблюдении требований правил устройства и эксплуатации электротехнических установок.

- 5. Произведите разделку отверстий и кабельных каналов. Проложите в кабельных каналах необходимые кабели питания (15), устройства *Fire Alarm* (17), ПДУ (16) и дополнительного оборудования.
- 6. Установите анкеры на всю глубину подготовленных отверстий.

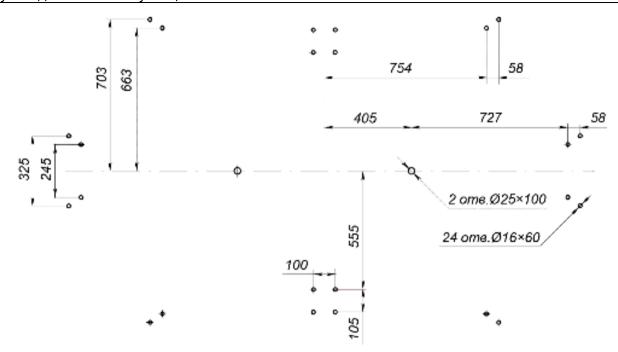


Рисунок 11. Схема разметки установочных отверстий

Внимание!

При выполнении дальнейших работ до закрепления балки привода будьте особенно внимательны и аккуратны, предохраняйте детали турникета от падения.

- 7. Распакуйте секции разделителя (5) и верхнюю балку разделителя (8) (ящик №6).
- 8. Произведите монтаж разделителя (работайте вдвоем!):
 - Установите обе секции разделителя (5) на установочную поверхность, ориентируя отверстия в опорных фланцах по расположению анкеров.
 - Закрепите стойки на установочной поверхности анкерными болтами M10×50. Затяжка предварительная, для возможности регулировки положения.
- 9. Установите верхнюю балку разделителя в стойки разделителя и зафиксируйте ее винтами M6×16 (8 штук) с шайбами, входящими в комплект поставки (рис. 12).

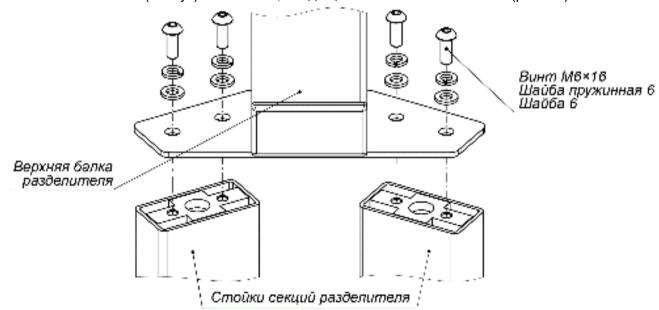


Рисунок 12. Установка верхней балки разделителя

10. Распакуйте нижнюю опору роторов (11) (ящик №6) и установите ее на отверстия с анкерами М16 в установочной поверхности (см. рис. 13). Распакуйте нижние узлы вращения роторов (3) (вставлены в нижнюю опору). В соответствующие места опоры вставьте фланцы опорные узлов вращения роторов и закрепите нижнюю опору на установочной поверхности двумя анкерными болтами М16×60 с шайбами (в комплект поставки не входят).

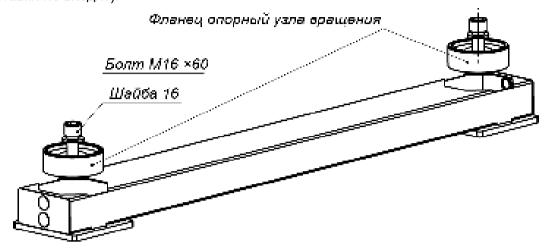


Рисунок 13. Крепление нижней опоры на установочной поверхности

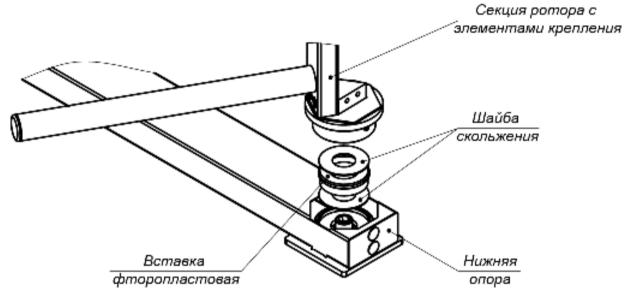


Рисунок 14. Нижний узел вращения

- 11. В опорных фланцах нижней опоры соберите нижние узлы вращения (3) роторов (см. рис. 14). Две шайбы скольжения и находящаяся между ними фторопластовая вставка должны лежать в каждом узле без перекосов, опираясь на всю опорную поверхность, симметрично относительно оси ротора (верхняя шайба скольжения приклеена к валу ротора). При этом гладкие поверхности шайб скольжения должны быть ориентированы на вставку. Допускается применение на поверхностях скольжения смазки типа ШРУС-4.
- 12. Распакуйте секции формирователя прохода и балки опорные (ящики №4 и №5). Из ящика №6 возьмите пакет со сборочно-монтажными принадлежностями.
- 13. Произведите монтаж секций формирователей прохода для обоих ИУ турникета (работайте вдвоем!):
 - Установите секции (6) формирователей прохода на установочную поверхность, ориентируя отверстия в опорных фланцах по расположению анкеров. При этом левая и правая секции каждого ИУ турникета должны быть правильно выставлены и сориентированы: блоки индикации формирователей должны быть развернуты наружу (см. рис. 2) и учтено расположение на секциях мест крепления опорной балки (см. рис. 15).

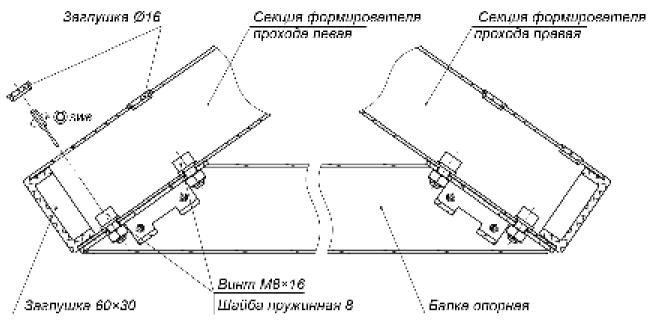


Рисунок 15. Крепление балки опорной к секциям формирователя прохода

- Закрепите секции на установочной поверхности анкерными болтами M10×50. Затяжка предварительная, для возможности регулировки положения.
- 14. Установите балки опорные (7) на секции (6) формирователей прохода, каждую в следующем порядке (см. рис. 15):
 - Сориентируйте балку между секциями формирователя прохода так, чтобы скошенные торцы балки подходили к соответствующим местам крепления на секциях, а прямоугольное отверстие в средней части балки было расположено сверху. Поочередно протяните кабели индикации из секций формирователя прохода через балку опорную и выведите их в это отверстие.
 - Закрепите балку опорную на секциях формирователя прохода четырьмя винтами M8×16 (ключ SW6) из комплекта сборочно-монтажных принадлежностей (ящик №6). При уличном монтаже стыки опорной балки с секциями формирователя прохода рекомендуется герметизировать, используя атмосферостойкий силиконовый герметик по инструкции производителя.
- 15. Распакуйте балку привода (9) с крышкой (10) (ящик №1).
- 16. Произведите монтаж балки привода (9) (работайте вдвоем!):
 - Снимите крышку (10) с балки привода (см. разд. 6).
 - Используя две стремянки, осторожно установите балку сверху на турникет, при этом шпильки, расположенные на секциях (6) формирователей прохода, должны попасть в соответствующие отверстия в балке. Будьте внимательны не повредите соединительные кабели!
 - Придерживая балку, осторожно приподнимите ее с одной стороны и пропустите концы кабелей индикации (14) из балки опорной (7) в соответствующие отверстия балки привода. Временно закрепите их внутри балки (к примеру, с помощью скотча). Те же самые действия произведите с другой стороны балки.
 - Закрепите балку привода на секциях (6) формирователя прохода четырьмя гайками М10 с шайбами (см. рис. 16), навернув их на шпильки с помощью торцового ключа S17. Затяжка гаек предварительная, для возможности регулировки положения.
 - Закрепите балку привода на опорных балках обоих формирователей прохода (7) и на верхней балке разделителя турникета (8) винтами M8×25 (6 штук), ключ SW6, используя квадратные пластины из комплекта поставки (см. рис. 17). Затяжка винтов предварительная, для возможности регулировки положения балки привода.

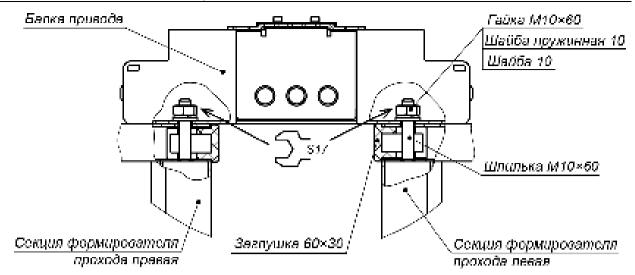


Рисунок 16. Крепление балки привода к секциям формирователя прохода

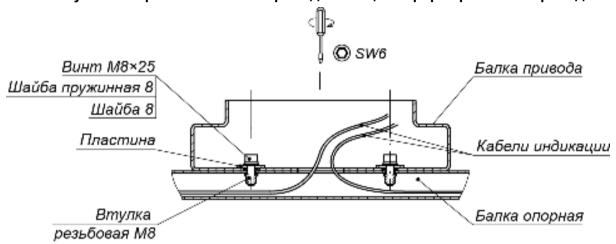


Рисунок 17. Крепление балки привода с балкой опорной

- 17. Произведите монтаж роторов (1) ИУ турникета (работайте вдвоем!), каждый в следующем порядке:
 - Распакуйте секции ротора (1) (ящик №2 ротор 1, ящик №3 ротор 2).
 - Возьмите одну из трех секций ротора, на которой закреплены соединительные вставки (элементы крепления) и хвостовики (верхний с квадратным валом и нижний цилиндрический). Заведите ее с небольшим наклоном нижним хвостовиком в нижний узел вращения (3) (см. рис. 14) и затем переведите секцию в вертикальное положение.
 - Сориентируйте секцию ротора турникета согласно выбранному режиму прохода через турникет (см. разд. 8.5, рис. 22) и с учетом совпадения граней верхнего вала ротора с гранями вала привода.
 - Соедините верхний вал ротора с валом привода исполнительного механизма двумя полумуфтами и четырьмя винтами M8×30 с пружинными шайбами (ключ SW6) (см. рис. 18). Будьте осторожны, полумуфты имеют большой вес, не допускайте их падения во избежание травм!
 - Последовательно закрепите на элементах крепления установленной секции ротора две оставшиеся секции, используя 4 винта М8×14 для верхних точек крепления и 20 винтов М8×12 (ключ SW6) для остальных точек крепления с пружинными шайбами (см. рис. 19). Для монтажа данных винтов рекомендуется использовать инструмент с возможностью фиксации в нем закручиваемого винта, к примеру, для ротора из стали инструмент с магнитным наконечником (для ротора из нержавеющей стали применены винты также из нержавеющей стали, поэтому для этой цели нужно использовать липкую ленту, намотанную на наконечник, или подходящий пластичный материал).

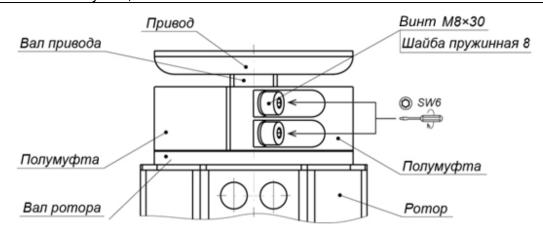


Рисунок 18. Муфтовое соединение вала привода исполнительного механизма с валом ротора

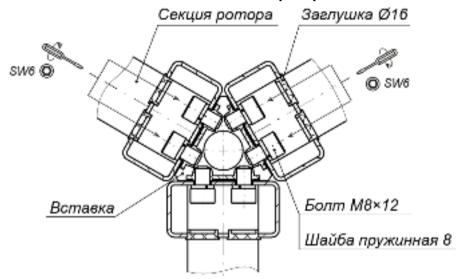
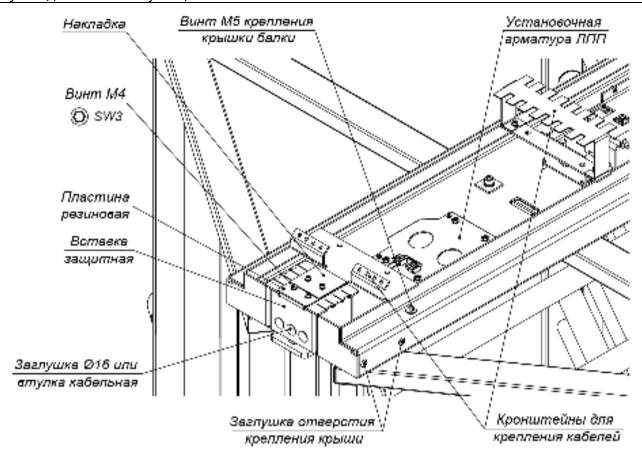



Рисунок 19. Схема соединения секций ротора

- По окончанию сборки проверьте равномерность зазоров между секциями и окончательно затяните все винты ротора.
- Проверьте вертикальность положения ротора с помощью уровня. При необходимости устраните отклонение от вертикальности путем смещения балки привода (9) в пределах допуска монтажных отверстий. Окончательно затяните все гайки и винты крепления балки привода.
- Разблокируйте ключами замки механической разблокировки турникета и проверьте вращение ротора. Вращение должно быть равномерным, без заеданий и скрипа, одинаковым по прилагаемому усилию в обе стороны.
- 18. Окончательно затяните болты, винты и гайки крепления всех элементов турникета и анкерные болты крепления турникета к установочной поверхности. При возникновении перекосов в силовых элементах конструкции турникета допускается использовать монтажные прокладки.
- 19. Вновь проверьте вертикальность положения роторов обоих ИУ турникета с помощью уровня и свободное вращение их створок. Усилие поворота на середине створки не должно превышать 3 кгс (за середину створки условно принимается середина пятой снизу преграждающей планки секции ротора). Усилие поворота можно измерить динамометром или бытовыми пружинными весами. В случае несоответствия необходимо проверить правильность юстировки и сборки турникета, ротора, а также нижнего узла вращения.
- 20. Закройте пластиковыми заглушками Ø16 отверстия для винтов соединения секций ротора (2) и отверстия крепления балки опорной (7) к секциям (6) формирователя прохода (см. рис. 15 и 19).

- 21. Для варианта прокладки кабелей питания и управления сверху через торец балки привода: в защитной вставке выньте необходимое количество заглушек, на их место вставьте кабельные втулки и через них протяните кабели внутрь балки привода.
- 22. <u>Для верхней прокладки кабелей между двумя турникетами</u>, стоящими вплотную друг к другу, используются швеллеры из комплекта поставки (см. рис. 21). При установке швеллеров предварительно нужно снять вставки защитные, открутив сверху по два винта М4 (ключ SW3). Швеллер большего размера должен быть сверху.
- 23. <u>Для варианта прокладки кабелей питания и управления снизу через специальный кабельный канал для подводки кабелей снизу</u> (имеется в стандартном комплекте поставки):
 - положите кабельный канал нижним концом к зоне выхода кабелей из установочной поверхности и протяните через него кабели;
 - снимите вставку защитную (см. рис. 20), для чего открутите два винта M4 (ключ SW3), удерживающие ее сверху;
 - установите кабельный канал нижним концом на отверстия с анкерами в установочной поверхности, а верхним концом на место вставки защитной и заведите кабели внутрь балки привода;
 - зафиксируйте кабельный канал двумя винтами М4 сверху и двумя анкерными болтами снизу.
- 24. Произведите подключение к контактам DIN-рейки в соответствии со схемой подключения турникета и дополнительного оборудования (см. рис. 25):
 - кабелей индикации (14), используйте самоклеящиеся площадки с пластиковыми стяжками, установленные по месту;
 - кабелей питания ИУ турникета (15);
 - кабелей ПДУ (16) или устройства РУ;
 - кабеля устройства *Fire Alarm* (17) (в случае отсутствия устройства *Fire Alarm* убедитесь в наличии перемычек *«Fire Alarm»*);
 - перемычек «*IMP / POT*» (на контактах 15 и 16 DIN-рейки) для потенциального режима управления турникетом;
 - кабелей от дополнительного оборудования при наличии данного оборудования.
- 25. Проверьте правильность и надежность электрических соединений в соответствии со схемой подключения турникета и дополнительного оборудования (см. рис. 25).
- 26. Аккуратно уложите кабели внутри балки привода на имеющиеся держатели, закрепите их с помощью стяжек неоткрывающихся из комплекта поставки. Кабели не должны мешать работе исполнительных механизмов ИУ турникета и свободному закрыванию крышки балки привода.
- 27. Для безмоторной версии турникета **PERCo-RTD-20.2** при необходимости выполните регулировку демпфирующих устройств турникета (см. разд. 8.6).
- 28. Установите крышку (10) на балку привода (9):
 - Аккуратно поднимите крышку и наденьте ее сверху на балку привода. Работайте вдвоем! Крышку балки временно можно класть на поперечные элементы турникета или его крыши.
 - Вкрутите шесть винтов М5 (ключ SW4), фиксирующие крышку балки (см. рис. 20).
- 29. Отключите механическую разблокировку обоих ИУ турникета (см. разд. 9.4).
- 30. Включите оба ИУ турникета согласно разд. 9.1. Проведите проверку работоспособности каждого ИУ турникета в тестовом режиме при управлении от ПДУ согласно разд. 8.8.

Турникет установлен и готов к работе.

Балка привода. Вид снизу

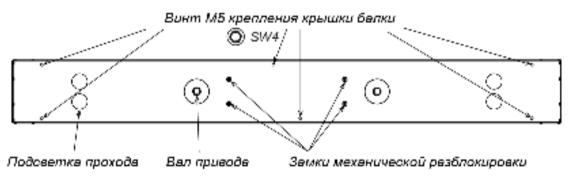


Рисунок 20. Элементы балки привода

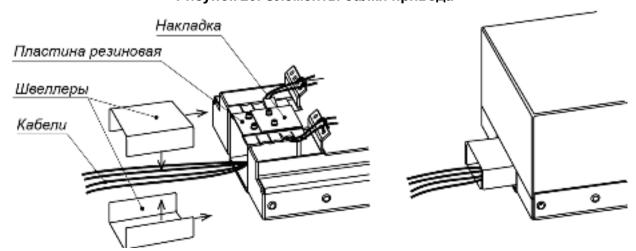


Рисунок 21. Прокладка кабелей между двумя турникетами

8.5 Выбор режима прохода через турникет

При выборе режима прохода через ИУ турникета (см. табл. 11 и 12) учитывайте уровень требований к контролю на пропускном пункте, интенсивность использования турникета, конструкцию пропускного пункта и другие эксплуатационные факторы.

Режим прохода зависит от положения ротора ИУ турникета в исходном (закрытом) состоянии. Возможны два варианта перекрытия створками зоны прохода в исходном состоянии, определяющие возможные режимы прохода:

- **Стандартный** (см. рис. 22а). В исходном состоянии зону прохода перекрывает одна створка. Стандартный режим прохода через ИУ турникета рекомендуется использовать в тех случаях, когда нет особо жестких требований к контролю на пропускном пункте.
- Шлюзовой (см. рис. 22б). В исходном состоянии зону прохода перекрывают две створки, образуя шлюз часть зоны прохода через ИУ турникета, ограниченную секциями (6) формирователя прохода и двумя створками. Наличие шлюза дает возможность организации усиленного контроля доступа на объект. Шлюзовой режим прохода особенно эффективен для управления проходом людей на пропускных пунктах режимных предприятий, специальных учреждений и других объектов с особыми требованиями к контролю доступа.

Выбор режима прохода определяется ориентацией вала ротора при его установке в процессе монтажа турникета (см. разд. 8.4). В дальнейшем, в зависимости от особенностей эксплуатации ИУ турникета, возможен переход от стандартного режима прохода к шлюзовому и обратно путем переустановки ротора.

При необходимости для переустановки положения ротора выполните следующие действия (работайте вдвоем!):

- 1. Заблокируйте ротор в исходном положении. Выключите источники питания турникета и отсоедините их от сети.
- 2. Снимите полумуфты (см. рис. 18), отвернув 4 винта М8 муфтового соединения (4). Будьте осторожны! Удерживайте ротор и полумуфты от падения.
- 3. Разверните ротор на 180° (рис. 22).
- 4. Соедините вал ротора с валом исполнительного механизма посредством полумуфт.
- 5. Затяните винты, стягивающие полумуфты.
- 6. Выполните механическую разблокировку ИУ турникета (см. разд. 9.4) и проверьте свободное вращение ротора, после чего верните створки в исходное положение.
- 7. Выполните механическую блокировку ИУ турникета.
- 8. Включите турникет согласно разд. 9.1.

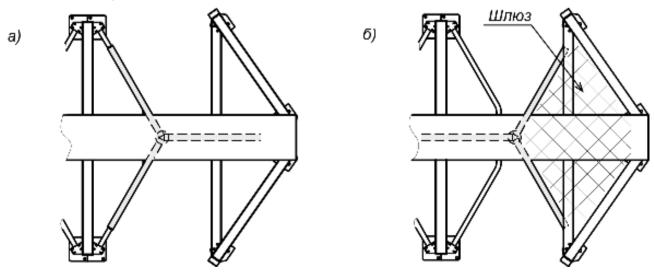


Рисунок 22. Исходное положение створок ИУ турникета (вид сверху): а – для стандартного режима прохода, б – для шлюзового режима прохода

¹ При эксплуатации турникета в составе СКУД использование шлюзового режима возможно, только если контроллер СКУД, управляющий турникетом, поддерживает такой режим прохода.

8.6 Регулировка демпфирующих устройств PERCo-RTD-20.2

Внимание!

Правильно отрегулированный демпфер обеспечивает практически безударную доводку створок ротора в исходное положение. Работа турникета с неотрегулированным демпфером может привести к выходу из строя его деталей и необходимости проведения ремонтных работ.

Демпфирующее устройство (далее — *демпфер*) входит в состав исполнительных механизмов ИУ турникета модификаций *PERCo-RTD-20.2* с механическим приводом доворота. Демпфер предназначен для обеспечения плавной и безударной остановки ротора в конце его автоматического доворота в направлении вращения до исходного положения створок.

Периодичность регулировки демпфера:

- в процессе монтажа турникета перед началом его эксплуатации;
- в процессе эксплуатации во время проведения технического обслуживания турникета (см. разд. 10).
- при значительных изменениях температурного режима эксплуатации турникета, например, для турникетов, эксплуатируемых на открытом воздухе, при переходе от летней эксплуатации к зимней, и наоборот.

8.6.1 Проверка работы демпфирующего устройства

Перед началом регулировки демпфера выполните следующие действия:

- 1. Выключите источники питания турникета и отсоедините их от сети.
- 2. Произведите механическую разблокировку ИУ турникета (см. разд. 9.4).
- 3. Убедитесь в том, что ротор ИУ разблокирован, повернув его вручную несколько раз в обоих направлениях.
- 4. Медленно поверните створку ротора рукой из исходного положения в любом направлении на угол более 60° до начала автоматического доворота ротора в направлении вращения.
- 5. Отпустите створку и дайте ротору совершить автоматический доворот. Во время доворота обратите внимание на то, как происходит движение и остановка створки:
 - если в конце доворота створка подходит к своему исходному положению со значительной скоростью и, не останавливаясь в нем, «проскакивает» его, а затем возвращается назад и совершает несколько колебательных движений около исходного положения – демпфер необходимо отрегулировать в сторону увеличения усилия демпфирования;
 - если после небольшого "проскока" ротор плавно возвращается в исходное положение, регулировка демпфера не требуется;
 - во время доворота створка движется с видимым чрезмерным замедлением демпфер необходимо отрегулировать в сторону уменьшения усилия демпфирования.

Демпфер отрегулирован нормально, если скорость движения створки во время доворота примерно соответствует средней скорости комфортного прохода человека через турникет, а в конце доворота створка подходит к своему исходному положению с плавным замедлением и останавливается в нем без обратного движения и значительных колебаний около исходного положения:

8.6.2 Порядок регулировки демпфирующего устройства

Примечание:

- При поставке демпфер отрегулирован на летний режим работы (положение регулировочного винта на шкале 5) и, как правило, не требует регулировок в диапазоне от -5°C до +45°C.
- Для нормальной работы турникета при температурах ниже -5°C требуется ослабление демпфера (увеличение натяжения пружин доворота).

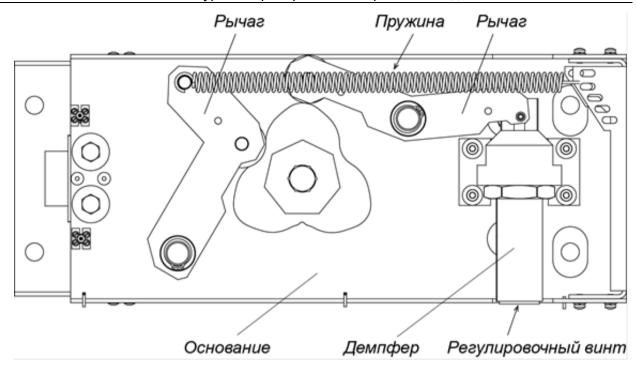


Рисунок 23. Демпфер турникета PERCo-RTD-20.2

- 1. Снимите крышку (10) с балки привода (9) (см. разд. 6).
- 2. Отверните шестигранным ключом SW1,5 стопорный винт регулировочного винта демпфера, расположенный на торце регулировочного винта (см. рис. 23).
- 3. В зависимости от требуемой регулировки поверните регулировочный винт демпфера в необходимом направлении:
- по часовой стрелке до деления 7, если требуется увеличить усилие демпфирования;
- против часовой стрелки до деления 3, если требуется уменьшить усилие демпфирования.
- 4. Повторно выполните проверку работы демпфера согласно разд. 8.6.1.
- 5. При необходимости повторите корректировку положения *регулировочного винта* демпфера его вращением. Добейтесь оптимальной скорости доворота ротора.
- 6. В зависимости от условий эксплуатации может потребоваться совместно с п. 3 произвести перестановку пружин рычага для увеличения или уменьшения усилия их натяжения (соответственно для увеличения или уменьшения скорости доворота ротора турникета).

Внимание!

Во избежание травм перестановку пружин рычага рекомендуется начинать со снятия зацепа пружины с рычага.

- 7. По окончании регулировок зафиксируйте стопорным винтом положение регулировочного винта демпфера.
- 8. Установите крышку на балку привода (см. разд. 6).
- 9. Произведите механическую блокировку ИУ турникета (см. разд. 9.4).
- 10. Включите турникет согласно разд. 9.1.

8.7 Замена ламп подсветки прохода

При необходимости замена ламп подсветки прохода производится в следующем порядке (см. рис. 20, 24):

- выключите источники питания турникета и отсоедините их от сети;
- снимите крышку балки привода (см. разд. 6);

- в балке привода снимите установочную арматуру для ЛПП, отвинтив по 4 винта M4 (отвертка PH2);
- замените ЛПП и прикрутите установочную арматуру на место;
- проверьте подключение ЛПП и кабеля питания ЛПП к клеммным колодкам и DIN-рейке в соответствии со схемой соединений (см. рис. 25).

Примечание:

Для подсветки прохода применяются только LED лампы 5W / 12V с цоколем GU-5,3 MR16 или аналогичные. <u>Нельзя использовать галогенные лампы!</u>

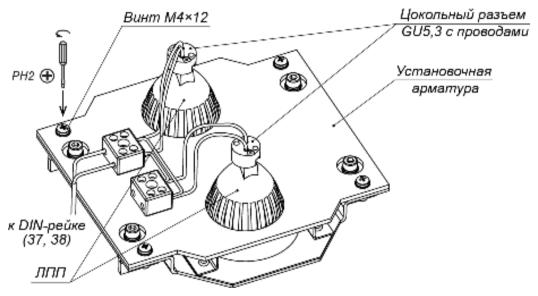


Рисунок 24. Лампы подсветки прохода с установочной арматурой

8.8 Проверка работоспособности турникета

Проверьте работоспособность каждого ИУ турникета в отдельности (разд. 8.8.1, 8.8.2). Затем проверьте корректность работы турникета при одновременном проходе нескольких человек через оба ИУ турникета.

8.8.1 Проверка механической и аварийной разблокировки ИУ турникета

- 1. Проверьте работу замков механической разблокировки для обоих направлений прохода по отдельности.
- 2. Приведите ротор ИУ турникета в исходное положение. Включите питание ИУ турникета (разд. 9.1).
- 3. Проверьте работу датчиков механической разблокировки. Откройте замки механической разблокировки для одного из направлений прохода и проконтролируйте изменение индикации для разблокированного направления на зеленую стрелку, на ПДУ должен погаснуть светодиод над кнопкой **STOP** и загореться над кнопкой разблокированного направления. Аналогично проверьте работу датчиков для другого направления прохода.
- 4. Откройте оба замка механической разблокировки и проконтролируйте возможность вращения ротора в обе стороны, при этом моторный вариант будет доворачиваться до исходного положения автоматически.
- 5. Закройте замки механической разблокировки, при этом ИУ турникета заблокируется в обоих направлениях, а индикация перейдет в исходное состояние: на стойках горит красный крест, на ПДУ красный светодиод над кнопкой **STOP**.
- 6. Проверьте работоспособность аварийной разблокировки *Fire Alarm*, для чего подайте сигнал с устройства *Fire Alarm* или разомкните перемычку между клеммами 6 и 7 DIN-рейки, при этом ИУ турникета должно разблокироваться в обоих направлениях, а индикация на ПДУ должна соответствовать п. 8 табл. 7.

8.8.2 Проверка работоспособности ИУ турникета в тестовом режиме

Проверка выполняется при управлении ИУ турникета в импульсном режиме с ПДУ.

- 1. Убедитесь, что ИУ турникета механически заблокировано в обоих направлениях (см. разд. 9.4).
- 2. Включите питание ИУ турникета согласно разд. 9.1. При этом ПДУ подаст одиночный звуковой сигнал.
- 3. Для перевода ИУ турникета в тестовый режим кратковременно нажмите одновременно все три кнопки ПДУ. При этом ПДУ подаст одиночный звуковой сигнал, индикация ПДУ будет соответствовать п. 1 табл. 7.
- 4. После перехода ИУ турникета в тестовый режим индикация на ПДУ будет соответствовать п. 2 табл. 7.
- 5. Нажмите левую кнопку (кнопку **LEFT**) ПДУ. ИУ турникета разблокируется для прохода в направлении А, при этом индикация на ПДУ будет соответствовать п. 3 табл. 7, а электроника платы проверит соответствие сигналов с датчиков данного направления. Если через 10 с зуммер ПДУ не выдаст ни одного звукового сигнала, то датчики исправны. При появлении звуковых сигналов зуммера ПДУ неисправный датчик можно определить по табл. 8.
- 6. Поверните ротор ИУ в разблокированном направлении на угол 15°, при этом ротор перейдет в следующее положение, а зуммер ПДУ выдаст звуковой сигнал в соответствии с табл. 9. Поворачивая ротор на угол 360°, проконтролируйте соответствие между количеством звуковых сигналов и положением ротора по табл. 9. Нажмите кнопку **STOP** на ПДУ.

Примечание:

Если количество звуковых сигналов больше одного, то это соответствует ненормализованному состоянию одного из датчиков. В этом случае рекомендуется обратиться за консультацией в ближайший сервисный центр компании *PERCo*.

- 7. Нажмите правую кнопку (кнопку **RIGHT**) ПДУ и проведите аналогичные проверки для направления В. При этом индикация ПДУ будет соответствовать п. 4 табл. 7, а звуковая индикация должна соответствовать табл. 9.
- 8. Одновременно нажмите кнопки **STOP** и **LEFT** ПДУ.
- 9. **Для PERCo-RTD-20.2.** Поверните ротор ИУ в направлении А на угол более 50°, при этом проконтролируйте следующее:
 - индикация на ПДУ должна соответствовать п. 5 табл. 7;
 - изменение на выходах *PASS A(B)* должно соответствовать текущему повороту ротора;
 - ротор должен совершить доворот в направлении прохода;
 - появление непрерывного звукового сигнала на ПДУ и сигнала *Ready* свидетельствуют об отсутствии изменения сигналов с датчиков поворота в течение 10 с и, соответственно, о неисправности цепей датчиков поворота.

Для PERCo-RTD-20.1. Ротор ИУ начнет непрерывное вращение в направлении А, при этом проконтролируйте следующее:

- индикация ПДУ должна соответствовать п. 5 табл. 7;
- изменение на выходах *PASS A(B)* должно соответствовать текущему повороту ротора;
- направление вращения ротора должно соответствовать заданному;
- ротор должен вращаться плавно, без рывков;
- появление непрерывного звукового сигнала ПДУ и сигнала *Ready* свидетельствуют об отсутствии изменения сигналов с датчиков поворота в течение 10 с и, соответственно, о неисправности цепей датчиков поворота.
- 10. Повторите указанную проверку для поворота ротора в направлении *В.* Индикация на ПДУ должна соответствовать п. 6 табл. 7.
- 11. По окончании проверки нажмите кнопку **STOP** на ПДУ.

12. Выйдите из тестового режима, для чего выключите и снова включите турникет.

Таблица 7. Состояние органов управления и средств индикации ПДУ в зависимости от команды управления¹

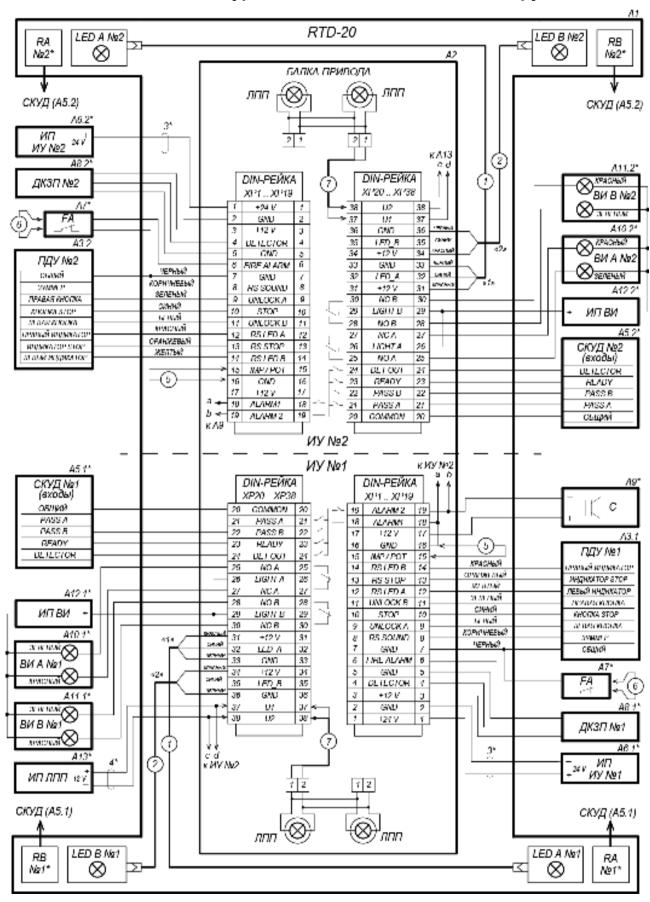
	Команда управления		Состояние ПДУ						
Nº			Кнопки ПДУ			Индикация над кнопками			
		L	STOP	R	Зуммер	L	STOP	R	
1	Запуск тестового режима	+	+	+	+	Зел	Кр	Зел	
2	Исходное состояние	_	+	_	_	-	Кр	-	
3	Разблокировка в направлении L	+	_	_	+	Зел	Кр	-	
4	Разблокировка в направлении R	1	_	+	+	1	Кр	3ел	
5	Вращение в направлении L	+	+	-	+	Зел	_	_	
6	Вращение в направлении R	_	+	+	+	-	_	3ел	
7	Выход из тестового режима	+	+	+	+	Зел	Кр	Зел	
8	Срабатывание Fire Alarm	1	_	_	_	Зел	Кр	Зел	

Таблица 8. Проверка состояния датчиков

Количество звуковых сигналов зуммера ПДУ	Название датчика
1	Нормальное состояние всех датчиков, ненормализованных нет
2	Датчик кольца левый (SPL)
3	Датчик кольца правый (SPR)
4	Датчик замка левый №1 (SZL1)
5	Датчик замка левый №2 (SZL2)
6	Датчик замка правый №1 (SZR1)
7	Датчик замка правый №2 (SZR2)

Таблица 9. Соответствие между звуковыми сигналами ПДУ и положением ротора ИУ турникета²

Количество звуковых сигналов зуммера ПДУ	Положение ротора ИУ турникета
1	Исходное
2	Угол 12°30′в сторону R или 85° в сторону L
3	Угол 50° в сторону R или L
4	Угол 85° в сторону R или 12°30′ в сторону L


В случае выявления каких-либо неисправностей рекомендуется обратиться за консультацией в ближайший сервисный центр компании **PERCo**. Список сервисных центров **PERCo** приведен в паспорте изделия.

_

¹ В табл. 8 обозначены: + – кратковременное нажатие кнопки, звуковой сигнал зуммера; Зел – горит зеленый индикатор; Кр – горит красный индикатор.

 $^{^2}$ Количество звуковых сигналов соответствует текущему положению ротора. Сигналы выдаются при переходе ротора в следующее положение.

8.9 Схема подключения турникета и дополнительного оборудования

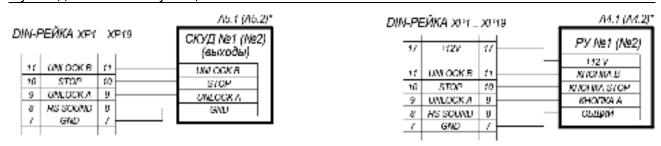


Рисунок 25. Схема подключения турникета и дополнительного оборудования Таблица 10. Перечень элементов схемы подключения турникета и дополнительного оборудования

Обозначение	Наименование	К-во, шт.
A1	Турникет PERCo-RTD-20	1
A2	Балка привода турникета	1
A3.1, A3.2	ПДУ (№1 и №2)	2
A4.1*, A4.2*	Устройство РУ (№1 и №2)	2
A5.1*, A5.2*	Контроллер СКУД (№1 и №2)	2
A6.1*, A6.2*	ИП ИУ турникета (№1 и №2), +24V / 5,5A	2
A7*	Устройство, подающее команду аварийной разблокировки <i>Fire Alarm</i>	1
A8.1*, A8.2*	ДКЗП (№1 и №2)	2
A9*	Сирена, +12V	1
A10.1*, A10.2*, A11.1*, A11.2*	Выносные индикаторы направлений А и В (для ИУ №1 и №2)	4
A12.1*, A12.2*	ИП выносных индикаторов	2 (или 1)
A13*	ИП ламп подсветки прохода, +12V / 3A	1
ЛПП	Лампы подсветки прохода	4
LED A, LED B	Блоки индикации направлений прохода А и В (для ИУ №1 и №2)	4
RA*, RB*	Считыватели СКУД направлений прохода А и В (для ИУ №1 и №2)	4
XP1XP38	Клеммы MVK4 на DIN-рейках (для ИУ №1 и №2)	76
1*, 2*	Кабели индикации направлений прохода А и В (для ИУ №1 и №2)	4
3*	Кабели питания ИУ турникета (№1 и №2)	2
4*	Внешний кабель питания ЛПП	1
5	Перемычки проводом « <i>IMP / POT</i> » (для ИУ №1 и №2). При поставке перемычки отключены – установлен импульсный режим управления	2
6	Перемычки <i>Fire Alarm</i> (для ИУ №1 и №2), подключаются в отсутствие устройства <i>Fire Alarm</i> (А7). При поставке перемычки подключены	2
7	Внутренние кабели питания ЛПП (для ИУ №1 и №2)	2

Примечания:

- 1. Элементы, отмеченные знаком (*), не входят в стандартный комплект поставки.
- 2. Приведенная схема соответствует стандартной ориентации ПДУ относительно турникета (см. разд. 5.3.5).
- 3. К одному выходу устройства *Fire Alarm* оба ИУ подключаются последовательно (см. разд. 5.3.6).

9 ЭКСПЛУАТАЦИЯ

При эксплуатации турникета соблюдайте меры безопасности, указанные в разд. 7.2.

Запрещается!

- Перемещать через зоны прохода турникета предметы, размер которых превышает ширину проема прохода.
- Производить рывки и удары по составным частям турникета.
- Разбирать и регулировать узлы, обеспечивающие работу турникета (исполнительные механизмы и блоки управления).

Рекомендации по уходу за нержавеющей сталью:

Антикоррозийный эффект нержавеющей стали зависит от состояния тонкого оксидного слоя на ее поверхности. Поэтому для чистки и ухода за ней необходимо использовать мягкие безворсовые салфетки и кусочки ткани, а также неабразивные нейтральные моющие средства. Не допускается использовать грубые и жесткие губки, щетки и другие предметы, способные поцарапать поверхность изделия. При обработке следует избегать очистителей, содержащих хлориды, аммиак и другие реагенты, способные разрушить оксидную пленку.

Для удаления сложных загрязнений с нержавеющей стали используйте неабразивные специально предназначенные для этого средства в соответствии с их инструкцией (например, "E-NOX Clean" или аналогичные).

После обработки следует смыть остатки моющих средств чистой водой и вытереть насухо обработанные поверхности. В процессе эксплуатации изделия рекомендуется использование специальных средств защиты нержавеющей стали, содержащих нейтральные масла (например, "Glutoclean" или аналогичные).

Если турникет устанавливается на улице – необходимо минимизировать возможное попадание на него атмосферных осадков и дорожных реагентов.

9.1 Включение турникета

При включении турникета придерживайтесь следующей последовательности действий:

- 1. Проверьте, чтобы створки роторов ИУ турникета находились в исходном положении, соответствующем выбранным режимам прохода (см. разд. 8.5).
- 2. Используя ключи, убедитесь, что замки механической разблокировки ИУ турникета закрыты для обоих направлений (см. разд. 9.4).
- 3. Подключите источники питания к сети с напряжением и частотой, указанными в их эксплуатационной документации.
- 4. Включите источники питания.

Примечание:

При исправности ИУ турникета его ПДУ выдаст один звуковой сигнал. Большее количество звуковых сигналов будет означать неисправность одного из датчиков (см. табл. 8).

- 5. Через 4 с после включения ИУ турникета автоматически подается команда *«Запрет прохода»*. На обоих блоках индикации (13) каждого ИУ загорятся красные индикаторы. На ПДУ (16) загорится красный индикатор над кнопкой **STOP**.
- 6. Проверьте работу ДКЗП и сирены в случае их установки. Для этого:
 - Через 10-50 с после включения ИП ИУ турникета (после гашения тестового индикатора внутри ДКЗП) поднесите руку к ДКЗП.
 - При срабатывании ДКЗП зазвучит непрерывный сигнал сирены. Прекращение сигнала сирены происходит либо автоматически, спустя заданное время (5±0,5 с), либо при нажатии любой кнопки на ПДУ.
- 7. Проверьте работу каждого ИУ турникета во всех режимах в соответствии с табл. 11, 12 и 13 в зависимости от используемого управляющего устройства и с учетом особенностей работы исполнительного механизма.
- 8. После завершения проверок турникет готов к эксплуатации.

9.2 Импульсный режим управления

Подача команд управления ИУ турникета от ПДУ и их индикация осуществляется в соответствии с табл. 11 и 12. Направления прохода независимы друг от друга, т.е. подача команды для одного направления не изменяет состояния противоположного направления прохода. Обозначения кнопок и световых индикаторов ПДУ показаны на рис. 5.

Таблица 11. Стандартный режим прохода при импульсном режиме управления (перемычка «IMP/POT» отключена)

	Действия	Индикация		Состояние ИУ
Команда	оператора на ПДУ ¹	ПДУ	Блоки индикации	турникета
«Запрет прохода»	Кратковременно нажмите кнопку STOP	Горит красный индикатор <i>«Stop»</i>	Горят красные индикаторы обоих направлений	Ротор заблокирован в исходном положении. Зона прохода перекрыта одной створкой
«Однократный проход в заданном направлении»	Кратковременно нажмите кнопку LEFT (RIGHT), соответствующую направлению прохода	Горит зеленый индикатор заданного направления «Left» («Right») и красный индикатор «Stop»	Горит зеленый индикатор для заданного направления и красный для противоположного	Ротор разблокирован для поворота створок на 120° (однократного прохода) в заданном направлении.
	Кратковременно нажмите одновременно две кнопки LEFT и RIGHT	Одновременно горят два зеленых индикатора «Left» и «Right» и красный индикатор «Stop»	Горят зеленые индикаторы для обоих направлений. После прохода в каждом направлении для этого направления загорается красный индикатор.	Ротор разблокирован для поворота створок на 120° (однократного прохода) в каждом направлении, после чего последовательно блокируются оба направления.
«Свободный проход в заданном направлении»	Кратковременно нажмите одновременно две кнопки STOP и LEFT (RIGHT)	Горит зеленый индикатор заданного направления «Left» («Right»)	Горит зеленый индикатор для заданного направления и красный для противоположного	Ротор разблокирован для вращения в заданном направлении до смены команды
«Свободный проход в обоих направлениях»	Нажмите одновременно все три кнопки: LEFT, STOP и RIGHT	Одновременно горят два зеленых индикатора «Left» и «Right»	Горят зеленые индикаторы для обоих направлений	Ротор разблокирован для вращения в обоих направлениях до смены команды

38

¹ Управление турникетом с помощью устройства РУ аналогично управлению от ПДУ. Кнопки на брелоке устройства РУ выполняют те же функции, что и кнопки ПДУ.

Таблица 12. Шлюзовой режим прохода при импульсном режиме управления (перемычка «*IMP/POT*» отключена)

	Действия	Индикация		Состояние ИУ
Команда	оператора на ПДУ	на ПДУ	блоки индикации	турникета
«Запрет прохода через шлюз»	Кратковременно нажмите кнопку STOP	Горит красный индикатор <i>«Stop»</i>	Горят красные индикаторы обоих направлений	Ротор заблокирован в исходном положении. Зона прохода перекрыта двумя створками, образующими шлюз
«Шлюзовый	1-й такт (вход в шлюз) Кратковременно нажмите кнопку, LEFT (RIGHT), соответствующую направлению прохода	Горит зеленый индикатор заданного направления «Left» («Right») и красный индикатор «Stop»	Горит зеленый индикатор направления входа в шлюз и красный для противоположного	Ротор разблокирован для поворота створок на 120° в заданном направлении входа в шлюз
двухтактный» (однократный прохода через шлюз)	2-й такт Примите решение о проходе, после чего кратковременно нажмите ту же кнопку для разрешения прохода, либо кнопку противоположного направления для возврата	Горит зеленый индикатор выбранного направления и красный индикатор «Stop»	Горит зеленый индикатор выбранного направления и красный для противоположного	Ротор разблокирован для поворота створок на 120° в выбранном направлении для выхода из шлюза
«Свободный проход через шлюз в заданном направлении»	Кратковременно нажмите одновременно две кнопки STOP и LEFT (RIGHT)	Горит зеленый индикатор заданного направления «Left» («Right»)	Горит зеленый индикатор для заданного направления и красный для противоположного	Ротор разблокирован для вращения в заданном направлении до смены команды
«Свободный проход через шлюз в обоих направлениях»	Нажмите одновременно все три кнопки: LEFT, STOP и RIGHT	Одновременно горят два зеленых индикатора «Left» и «Right»	Горят зеленые индикаторы для обоих направлений	Ротор разблокирован для вращения в обоих направлениях до смены команды

Примечание:

Нажатие кнопки на ПДУ соответствует подаче на контакты DIN-рейки (*Unlock A*, *Unlock B* и *Stop*) сигнала низкого уровня относительно контакта *GND*.

Особенности подачи команд:

- После команды «Однократный проход в заданном направлении» ИУ турникета автоматически заблокируется после прохода пользователя в данном направлении. Если проход не выполнен по истечении времени удержания в разблокированном состоянии (по умолчанию 5 с.), турникет также автоматически закроется.
- После подачи команды «Однократный проход в обоих направлениях» и совершения прохода в одном направлении возобновляется отсчет времени удержания в разблокированном состоянии для другого направления.

- После подачи команды «Однократный проход в заданном направлении» могут быть поданы команды «Свободный проход» для этого же направления или команда «Запрет прохода».
- После подачи команды «Свободный проход в заданном направлении» может быть подана только команда «Запрет прохода».

9.3 Потенциальный режим управления

Порядок подачи команд управления ИУ турникета от контроллера СКУД и их индикация при потенциальном режиме управления осуществляется в соответствии с табл. 13. Направления прохода независимы друг от друга, т.е. подача команды для одного направления не изменяет состояния противоположного направления прохода.

Если к моменту совершения прохода на контакте соответствующего направления прохода присутствует сигнал низкого уровня, то ИУ турникета в данном направлении останется открытым.

Таблица 13. Потенциальный режим управлен	ИЯ
(перемычка <i>«IMP/POT»</i> подключена)	

Команда	Управляющие сигналы	Индикация на блоках индикации	Состояние ИУ турникета
«Запрет прохода»		Горят красные индикаторы обоих направлений	Ротор заблокирован в исходном положении
I//C.BODOOHHIII	направления. Высокий уровень на	Горит зеленый индикатор для заданного направления и красный для противоположного	Ротор разблокирован для вращения в заданном направлении до смены команды
«Свободный проход в обоих направлениях»	Низкий уровень на обоих контактах, Unlock A и Unlock B и высокий уровень на контакте Stop	Горят зеленые индикаторы для обоих направлений	Ротор разблокирован для вращения в обоих направлениях до смены команды

9.4 Действия в нештатных ситуациях

Для экстренной эвакуации людей с территории предприятия в случае пожара, стихийных бедствий и других аварийных ситуаций необходимо предусмотреть аварийный выход. Для этой цели может использоваться полноростовая калитка **PERCo-WHD-16**.

Зоны прохода турникета могут служить только в качестве дополнительных аварийных выходов, при этом для обеспечения свободного прохода необходимо разблокировать вращение ротора турникета. Разблокировать турникет можно:

- управляющим сигналом с устройства аварийной разблокировки *Fire Alarm* (см. разд. 5.3.6);
- замками механической разблокировки обоих ИУ (при перебоях в электроснабжении, при выходе из строя ИП и т.п.).

Для механической разблокировки ИУ турникета выполните следующие действия:

- 1. Вставьте ключ в замок механической разблокировки, находящийся со стороны того направления, вращение ротора в которое необходимо разблокировать.
- 2. Откройте замок, повернув ключ против часовой стрелки на один полный оборот до упора.
- 3. Если турникет включен, то:
 - на блоке индикации разблокированного направления загорится зеленая стрелка;

- на ПДУ погаснет красный индикатор над кнопкой **STOP** и загорится зеленый над кнопкой разблокированного направления.
- 4. При необходимости аналогичным образом разблокируйте противоположное направление вращения ротора.
- 5. Убедитесь, что ИУ турникета разблокировано, повернув рукой его ротор на несколько оборотов в разблокированную сторону.

Отключение механической разблокировки ИУ турникета производится в обратном порядке, предварительно необходимо установить створки в исходное положение. После отключения разблокировки убедитесь, что ИУ турникета заблокировано в необходимом направлении.

9.5 Возможные неисправности

Перечень возможных неисправностей, устранение которых производится потребителем, приведен в табл. 14.

Таблица 14. Возможные неисправности и способы их устранения

Неисправность	Вероятная причина	Способ устранения
При включении ИП ИУ турникета не работает, индикаторы на ПДУ и на блоках индикации не горят	Неправильное подключение или обрыв кабеля питания ИУ турникета	Проверьте правильность подключения к DIN-рейке. При обрыве кабеля питания замените его
индикаторы на ПДУ и на блоках	Неправильное подключение или обрыв проводника кабеля управления	Проверьте правильность подключения кабеля управления к DIN-рейке. При обрыве кабеля управления замените его
ИУ турникета разблокируется, но отсутствуют сигналы <i>PASS A</i> и <i>PASS B</i> с турникета на контроллер СКУД (проход не фиксируется СКУД)	Неправильное подключение, обрыв или короткое замыкание кабеля управления	Проверьте цепи подключения PASS A, PASS B, Common. По результатам проверки устраните неправильное подключение, обрыв или короткое замыкание кабеля управления

При появлении других неисправностей рекомендуется обратиться за консультацией в ближайший сервисный центр компании **PERCo**. Список сервисных центров **PERCo** приведен в паспорте изделия.

10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При проведении технического обслуживания турникета (далее – *TO*) соблюдайте меры безопасности, указанные в разд. 7.1. ТО рекомендуется выполнять силами двух человек, имеющих квалификацию механика и электромеханика (или электрика) не ниже третьего разряда и изучивших данное руководство.

В процессе эксплуатации с целью поддержания работоспособности и обеспечения расчетного срока службы турникета необходимо периодически проводить его техническое обслуживание. Периодичность планового ТО – один раз в шесть месяцев. В случае возникновения неисправностей ТО следует проводить сразу после их устранения.

Внимание!

В целях профилактики повреждений и для поддержания соответствующего качества покрытия необходимо регулярно, не реже одного раза в квартал, производить очистку поверхности турникета от загрязнений.

Рекомендации по уходу за нержавеющей сталью см. в разд. 9.

Примечание:

Регулировка узлов, обеспечивающих работу турникета, не входит в объем работ, предусмотренных ТО. Эти узлы отрегулированы на заводе-изготовителе и в дополнительной регулировке не нуждаются.

Порядок проведения ТО следующий:

- 1. Выключите все источники питания турникета и отсоедините их от сети.
- 2. Снимите крышку (10) с балки привода (9) (см. разд. 6).
- 3. Последовательно проверьте и при необходимости подтяните резьбовые соединения креплений узлов турникета.
- 4. Очистите отсеки балки привода от возможных загрязнений.
- 5. Проверьте надежность крепления всех кабелей в клеммных колодках и разъемах.
- 6. Смажьте жидким машинным маслом типа И-20 детали исполнительных механизмов в соответствии с рис. 26 (допускаются аэрозольные силиконовые смазки для низких температур).
- 7. Смажьте механизмы секретности замков механической разблокировки со стороны замочной скважины. Проверьте работу замков; они должны работать без заеданий, обеспечивая надежную разблокировку (свободное вращение) ротора в обоих направлениях (см. разд. 9.4).
- 8. Для модификаций турникета **PERCo-RTD-20.2** проведите проверку работы демпферов и при необходимости их регулировку (см. разд. 8.6).
- 9. Установите крышку на балку привода (см. разд. 6).
- 10. Поочередно обслужите узлы вращения ротора (3) для каждого ИУ в следующем порядке:
 - Выполните демонтаж ротора (работайте вдвоем!):
 - Снимите полумуфты (см. рис. 18), отвернув 2 винта М8 муфтового соединения (4).
 Будьте осторожны! Удерживайте ротор и полумуфты от падения.
 - Аккуратно, приподнимая с небольшим наклоном, снимите ротор (1) с нижнего узла вращения, выведите его из турникета и положите на устойчивую поверхность.
 Можно опереть на формирователи.
 - Выньте из нижнего узла вращения (3) шайбы скольжения и фторопластовую втулку (см. рис. 14).
 - Проверьте затяжку анкерного болта опоры нижнего узла вращения к установочной поверхности и при необходимости подтяните его.
 - Очистите от загрязнений элементы нижнего узла вращения ротора и их поверхности трения. Внимательно осмотрите их на предмет отсутствия сколов, трещин и задиров. Допускается применение на поверхностях скольжения смазки типа ШРУС-4.
 - Последовательно проверьте соединения всех секций ротора на предмет отсутствия люфтов и равномерность зазоров. При необходимости выровняйте секции и устраните люфты, сняв заглушки и ослабив-затянув винты креплений М8 (см. рис. 19).
 - Установите ротор в соответствии с порядком монтажа (см. разд.8.4. п.17). Работайте вдвоем!
- 11. Проверьте затяжку всех анкерных болтов крепления турникета к установочной поверхности. При необходимости подтяните их.
- 12. Проверьте работу турникета в соответствии с разд. 8.8, а также работу дополнительного оборудования (при его наличии).

После завершения работ по техническому обслуживанию и проверок турникет готов к дальнейшей эксплуатации.

При обнаружении во время ТО турникета каких-либо дефектов его узлов, а также по истечении гарантийного срока его эксплуатации рекомендуется обратиться в ближайший сервисный центр компании *PERCo* за консультацией и для организации контрольного осмотра узлов турникета (список сервисных центров *PERCo* приведен в паспорте изделия).

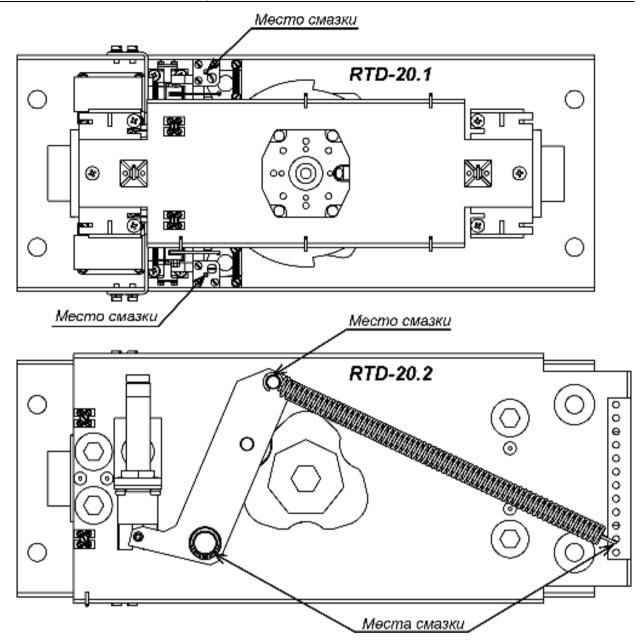


Рисунок 26. Вид сверху на исполнительный механизм ИУ, установленный в балке привода (9), с указанием мест смазки

Восстановление окрашенных поверхностей

При необходимости ремонта поврежденных окрашенных поверхностей турникета следует воспользоваться порошковой краской из ремонтного комплекта поставки турникета (см. разд. 4.1), руководствуясь следующей инструкцией по ее применению:

- 1. Обезжирьте и просушите поврежденную поверхность.
- 2. Разведите порошок краски в нужном количестве небольшим количеством ацетона до состояния густой сметаны. Необходимо иметь в виду, что краска начинает полимеризоваться в пределах 7-10 минут.
- 3. Нанесите краску на поврежденную поверхность кистью или тампоном.
- 4. Просушите отремонтированную поверхность до затвердевания краски; ориентировочное время сушки при комнатной температуре составляет 3...4 ч.

11 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Турникет в упаковке предприятия-изготовителя допускается транспортировать только закрытым транспортом (в железнодорожных вагонах, в контейнерах, в закрытых автомашинах, в трюмах, на самолетах и т.д.).

При транспортировании допускается штабелировать <u>только однотипные ящики</u> – в два ряда в вертикальном положении или до десяти рядов в горизонтальном. Габариты и вес ящиков указаны в табл. 4.

Хранение турникета допускается в закрытых помещениях при температуре окружающего воздуха от -40° С до $+50^{\circ}$ С и относительной влажности воздуха до 98% при $+25^{\circ}$ С. В помещении для хранения не должно быть паров кислот, щелочей, а также газов, вызывающих коррозию.

После транспортирования и хранения турникета при отрицательных температурах или при повышенной влажности воздуха перед началом монтажных работ его необходимо выдержать в упаковке не менее 24 ч в климатических условиях, соответствующих условиям эксплуатации (см. разд. 2).

ПРИЛОЖЕНИЯ

Приложение 1. Алгоритм подачи команд управления при импульсном режиме

Командой является активный фронт сигнала (переход сигнала из высокого уровня в низкий) на соответствующем контакте относительно уровней сигналов на других контактах.

Примечание:

Для ПДУ:

- активный фронт момент нажатия соответствующей кнопки на ПДУ;
- низкий уровень соответствующая кнопка на ПДУ в нажатом положении;
- высокий уровень соответствующая кнопка на ПДУ не нажата.

Подачей на контакты DIN-рейки *Unlock A, Stop* и *Unlock B* сигнала низкого уровня относительно контакта *GND* можно сформировать следующие команды.

«Запрет прохода» (ИУ турникета закрыто для входа и выхода) — активный фронт на контакте *Stop* при высоком уровне на контактах *Unlock A* и *Unlock B*. По этой команде закрываются оба направления.

«Однократный проход в направлении А» (ИУ турникета открыто для прохода одного человека в направлении А) — активный фронт на контакте Unlock А при высоком уровне на контактах Stop, Unlock В. По этой команде открывается направление А либо на 5 с, либо до совершения прохода в этом направлении, либо до команды «Запрет прохода», а направление В остается без изменений. Команда игнорируется, если в момент ее получения направление А находилось в состоянии «Свободный проход».

«Однократный проход в направлении В» (ИУ турникета открыто для прохода одного человека в направлении В) – активный фронт на контакте Unlock В при высоком уровне на контактах Stop, Unlock А. По этой команде открывается направление В либо на 5 с, либо до совершения прохода в этом направлении, либо до команды «Запрет прохода», а направление А остается без изменений. Команда игнорируется, если в момент ее получения направление В находилось в состоянии «Свободный проход».

«Однократный проход в обоих направлениях» (ИУ турникета открыто для прохода по одному человеку в каждом направлении) — активный фронт на контакте *Unlock A* открывает направление *A* при высоком уровне на контакте *Stop*, активный фронт на контакте *Unlock B* открывает направление *B* при высоком уровне на контакте *Stop*. Порядок следования фронтов не имеет значения. По этой команде открываются оба направления, каждое либо на 5 с, либо до совершения прохода в этом направлении, либо до команды «Запрет прохода». Команда игнорируется для того направления, которое в момент ее получения находилось в состоянии «Свободный проход».

«Свободный проход в направлении А» (ИУ турникета открыто для свободного прохода в направлении А) – активный фронт на контакте Unlock A при низком уровне на контакте Stop и высоком уровне на контакте Unlock B, или активный фронт на контакте Stop при низком уровне на контакте Unlock A и высоком уровне на контакте Unlock B. По этой команде открывается направление A до команды «Запрет прохода», а направление B остается без изменений.

Примечание:

При открытом для прохода направлении *В* при подаче команды *«Свободный проход в направлении А»* интервал между фронтами сигналов *Stop* и *Unlock А* не должен превышать *30 мс* (что соответствует одновременному нажатию кнопок). В противном случае команда может быть воспринята как команда *«Запрет прохода»*, и направление *В* может быть заблокировано. Данное замечание справедливо также для подачи команды *«Свободный проход в направлении В»* с учётом смены индексов направлений.

«Свободный проход в направлении В» (ИУ турникета открыто для свободного прохода в направлении В) – активный фронт на контакте Unlock В при низком уровне на контакте Stop и высоком уровне на контакте Unlock A, или активный фронт на контакте Stop при низком уровне на контакте Unlock В и высоком уровне на контакте Unlock A. По этой команде открывается направление В до команды «Запрет прохода», а направление А остается без изменений

«Свободный проход» (ИУ турникета открыто для свободного прохода в обоих направлениях) – активный фронт на контакте Unlock A при низком уровне на контакте Stop и активный фронт на контакте Unlock B при низком уровне на контакте Stop, или активный фронт на контакте Stop при низком уровне на контактах Unlock A, Unlock B. Порядок следования фронтов не имеет значения. По этой команде открываются оба направления до команды «Запрет прохода».

Приложение 2. Алгоритм подачи команд управления при потенциальном режиме

Примечание:

Для выходов контроллера СКУД:

- Высокий уровень контакты выходного реле разомкнуты либо выходной транзистор закрыт.
- Низкий уровень контакты выходного реле замкнуты либо выходной транзистор открыт.

«Оба направления закрыты» (ИУ турникета закрыто для входа и выхода) – высокий уровень на контактах *Unlock A*, *Unlock B* или низкий уровень на контакте *Stop*. По этой команде закрываются оба направления.

«Направление A открыто» (ИУ турникета открыто для прохода в направлении A) — низкий уровень на контакте Unlock A при высоком уровне на контактах Stop, Unlock B. По этой команде открывается направление A до снятия сигнала низкого уровня с контакта A, либо до команды «Оба направления закрыты», а направление B остается без изменений.

«Направление В открыто» (ИУ турникета открыто для прохода в направлении В) — низкий уровень на контакте Unlock В при высоком уровне на контактах Stop, Unlock А. По этой команде открывается направление В до снятия сигнала низкого уровня с контакта В, либо до команды «Оба направления закрыты», а направление А остается без изменений.

«Оба направления открыты» (ИУ турникета открыто для прохода в обоих направлениях) – низкий уровень на контактах *Unlock A* и *Unlock B* при высоком уровне на контакте *Stop*. По этой команде открываются оба направления до снятия сигнала низкого уровня с одного из контактов *A* (*B*), либо до команды «Оба направления закрыты».

Приложение 3. Схемы разметки для совместного с *PERCo-RTD-20* монтажа элементов пропускного пункта

Рисунок 27. Пример взаимного расположения турникета с калиткой PERCo-WHD-16 и ограждением PERCo-MB-16

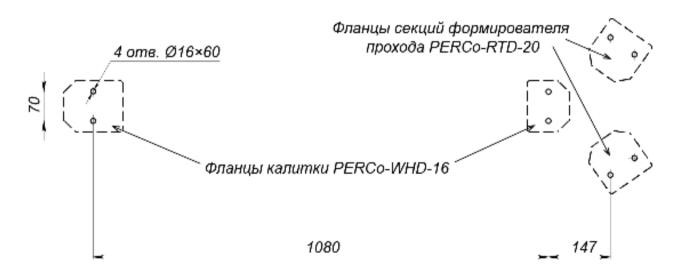


Рисунок 28. Схема разметки для монтажа турникета с калиткой WHD-16

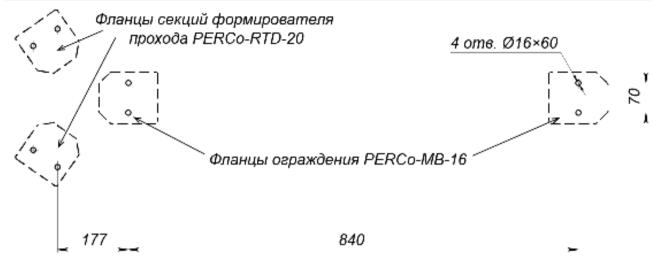


Рисунок 29. Схема разметки для монтажа турникета с ограждением МВ-16

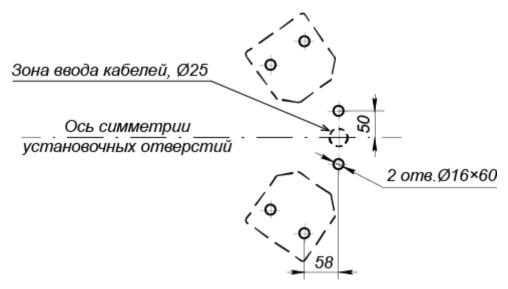


Рисунок 30. Схема разметки для монтажа турникета PERCo-RTD-20 совместно с комплектом нижнего подвода кабелей.

ООО «ПЭРКо»

Call-центр: 8-800-333-52-53 (бесплатно)

Тел.: (812) 247-04-57

Почтовый адрес: 194021, Россия, Санкт-Петербург, Политехническая улица, дом 4, корпус 2

Техническая поддержка:

Call-центр: 8-800-775-37-05 (бесплатно)

Тел.: (812) 247-04-55

system@perco.ru - по вопросам обслуживания электроники

систем безопасности

turniket@perco.ru - по вопросам обслуживания турникетов и

ограждений

locks@perco.ru - по вопросам обслуживания замков

soft@perco.ru - по вопросам технической поддержки

программного обеспечения

www.perco.ru

