

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Уличный управляемый (L2+) РоЕ коммутатор Gigabit Ethernet на 10 портов с термостабилизацией и резервным питанием

SW-80802/WLU

Прежде чем приступать к эксплуатации изделия, внимательно прочтите настоящее руководство

ОГЛАВЛЕНИЕ

1.	. Назначение	6
2.	. Комплектация*	7
3.	. Особенности оборудования	7
4.	. Внешний вид и описание элементов	8
	4.1 Внешний вид	8
	4.2 Описание элементов уличного коммутатора	9
5.	. Установка и подключение	11
6	. Проверка работоспособности системы	14
7. и	. Подготовка перед управлением коммутатором через WEB- нтерфейс**	
8.	. Управление через WEB интерфейс, основные элементы	17
	8.1 WEB интерфейс, общая информация	17
	8.2 System (Системная информация)	21
	8.3 IPv4 Settings (Настройки протокола IPv4)	22
	8.4 IPv6 Settings (Настройки протокола IPv6)	23
	8.4.1 Настройка IPv6	23
	8.4.2 IPv6 Neighbor Table (Таблица «соседей» IPv6)	24
	8.5 System Time (Системное время)	25
	8.5.1 Настройка системного времени	25
	8.6 RSTP Configuration (Настройка протокола RSTP)	27
	8.6.1 Конфигурирование RSTP. Базовая информация	27
	8.6.2 Настройка RSTP для портов	28
	8.6.3 RSTP Status	30
	8.7 ERPS (Протокол защиты трафика от петель в кольцевой топологии)	33
	8.7.1 Настройка ERPS	33
	8.7.2 ERPS Status (сводная информация о ERPS)	35

8.8 SNMP (простои протокол сетевого управления)	37
8.8.1 Настройка SNMP сервера	38
8.8.2 Настройка SNMP Trap	40
8.9 DHCP (Настройка протокола DHCP)	42
8.9.1 Настройка DHCP клиента	43
8.9.2 Настройка информации DHCP сервера	44
8.9.3 Настройка привязки информации к DHCP серверу	45
8.9.4 Настройка DHCP relay информации	46
8.10 РоЕ (Настройка РоЕ на портах)	47
8.10.1 Информация о настройках РоЕ	47
8.10.2 Настройка функции «РоЕ Keep Alive»	48
8.10.3 Настройка подачи РоЕ на порты по расписанию	49
8.10.4 Настройка приоритета подачи РоЕ на порты	50
8.11 ModBUS/TCP (Настройка промышленного протокола ModBUS/TCP)	52
8.11.1 Формат данных протокола Modbus/TCP	52
8.11.2 Обработка данных в Modbus/TCP	52
8.11.3 Настройка работы Modbust/TCP протокола	56
8.12 UPnP (набор протоколов Universal Plug and Play)	56
8.12.1 Настройка UPnP	57
8.13 Port Management (Управление портами)	57
8.13.1 Настройка портов	58
8.13.2 Статус портов	61
8.14 IGMP Snooping (Управление multicast рассылкой)	62
8.14.1 Настройка IGMP Snooping	63
8.14.2 Таблица IGMP Snooping	64
8.15 IEEE 802.1Q VLAN (Логическая «виртуальная» локальная	я сеть)64
8.15.1 VLAN Q-in-Q	65

8.15.2 Настройка 802.1Q VLAN	65
8.15.3 Таблица VLAN	66
8.15.4 Настройка VLAN PVID и Accept Type	67
8.15.5 Настройка VLAN Q-in-Q	68
8.16 QoS (Quality of Service)	71
8.16.1 Настройка QoS	71
8.16.2 Настройка режима Trust для QoS и CoS по умолчанию	72
8.16.3 Настройка CoS	73
8.16.4 Настройка ToS (DSCP)	74
8.17 Port Trunk (агрегация каналов)	75
8.17.1 Настройка функции Port Trunk	76
8.17.2 Статус функции Port Trunk	77
8.18 Storm Control (Защита от широковещательного шторма)	78
8.18.1 Настройка функции Storm Control	78
8.19 Port-Based Network Control IEEE 802.1X (контроль доступа и аутентификации)	79
8.19.1 Базовая настройка 802.1Х	79
8.19.2 Настройка 802.1Х для портов	80
8.19.3 Настройка локальной базы данных	81
8.19.4 Настройка сервера RADIUS	82
8.20 Port Mirroring (Зеркалирование портов)	83
8.20.1 Настройка функции Port Mirroring	83
8.21 Ping (команда PING)	84
8.21.1 Использование команды PING с IPv4/IPv6	84
8.22 LLDP (функция оповещения «соседей»)	85
8.22.1 Настройка LLDP	85
8.22.2 LLDP таблица «соседей»	86
8.23 System Warning (Системные оповещения)	87

8.23.1 Настройка системных оповещений	87
8.23.2 Журнал системных событий	88
8.23.3 Настройка SMTP Информации	89
8.23.4 Настройка выбора событий	91
8.24 MAC Table (Таблица MAC адресов)	93
8.24.1 Настройка постоянных (static) МАС адресов	93
8.24.2 Таблица МАС адресов	94
8.25 Authorization (Вход в систему управления коммутатором)	95
8.25.1 Настройка информации для входа в систему	95
8.26 Firmware Upgrade (Обновление прошивки)	96
8.26.1 Загрузка файла с прошивкой	97
8.26.2 Процесс загрузки файла с прошивкой в коммутатор	97
8.26.3 Копирование файла с прошивкой с USB накопителя	99
8.27 Config Backup (Создание резервной копии настроек)1	00
8.27.1 Сохранение резервного файла с настройками1	00
8.28 Config Restore (Восстановление настроек из файла)1	01
8.28.1 Восстановление настроек из файла1	01
8.29 USB Auto-Load & Auto – Backup (Функция автоматического сохранения/загрузки настроек)1	02
9. Технические характеристики* 1	03
10. Гарантия1	06
11. Приложение А «Габаритные размеры коммутатора» 1	07
12. Приложение Б «Крепления на стену / на опору»1	80
13. Приложение В. Набор команд для управления коммутатором через CLI1	10

1. Назначение

Уличный управляемый (L2+) РоЕ коммутатор Gigabit Ethernet на 10 портов SW-80802/WLU с термостабилизацией и резервным питанием предназначен для объединения сетевых устройств, запитывания их по технологии РоЕ и передачи данных между ними в условиях эксплуатации вне помещений. В основе устройства лежат высоконадежные комплектующие с расширенным диапазоном температур.

Уличный коммутатор SW-80802/WLU оснащен 8 PoE Gigabit Ethernet (10/100/1000Base-T) портами к каждому из которых можно подключать сетевые устройства на скорости до 1000 Мбит/с.

PoE (Power Over Ethernet) позволяет передавать данные вместе с питанием по кабелю витой пары к сетевым устройствам.

Максимальная мощность PoE — 30Вт на порт, а суммарная выходная мощность составляет 240Вт (8 портов по 30Вт).

Помимо этого, в уличном коммутаторе SW-80802/WLU предусмотрено 2 SFP порта (1000Base-X) – для обеспечения связи по оптоволоконному кабелю на скорости до 1 Гбит/с. Для связи по оптоволоконному кабелю необходимо использовать промышленные SFP модули со скоростью 1,25 Гбит/с (не входят в комплект поставки).

Уличный коммутатор SW-80802/WLU настраивается через WEB-интерфейс и имеет множество функций L2, L2+ уровня, таких как VLAN, QOS, LACP, SNMP, IGMP Snooping и др.

Высокая надежность сети, построенной на базе уличных коммутаторов SW-80802/WLU, достигается за счет использования RSTP, MSTP (протоколы быстрого развертывания дерева, защита от сетевых петель) и ERPS (топология «кольцо»).

В коммутаторе SW-80802/WLU реализована функция антизависания PoE (PoE Keep Alive), позволяющая дистанционно контролировать сетевую активность подключенных PoE устройств. Если подключенное устройство в течение заданного времени перестает отвечать на запросы, коммутатор перезагружает PoE порт.

Кроме того, уличный коммутатор SW-80802/WLU распознает тип подключенного сетевого устройства и при необходимости меняют контакты передачи данных (Auto Negotiation), что позволяет использовать кабели, обжатые любым способом (кроссовые и прямые).

Уличный коммутатор SW-80802/WLU оснащен оптическим кроссом для удобного подключения оптоволоконного кабеля.

Уличный коммутатор SW-80802/WLU с успехом может быть использован в самых различных сферах применения (видеонаблюдение, организация сети и т.д.), где требуется объединить до 8 сетевых устройств в одну сеть и запитать их по РоЕ в условиях эксплуатации вне помещений.

2. Комплектация*

- 1. Уличный коммутатор SW-80802/WLU 1шт;
- 2. Оптическая розетка 1шт;
- 3. Пигтейлы SM SC/UPC 2шт;
- 4. Комплект деталей защиты сростка оптоволокна (КДЗС) 2шт;
- 5. Плавкая вставка предохранитель 2шт.
- 6. Набор гермовводов 1шт.
- 7. Краткое руководство по эксплуатации –1шт;
- 8. Руководство по эксплуатации на CD -1шт;
- Упаковка 1шт.

3. Особенности оборудования

- Уличное исполнение, диапазон рабочих температур -50...+50°С, степень защиты IP66;
- Система термостабилизации и резервное питание (АКБ 2Ач).
- 8 коммутируемых Gigabit Ethernet (10/100/1000Base-T) портов с РоЕ;
- Максимальная выходная мощность РоЕ 30Вт на порт;
- Суммарная мощность РоЕ 240Вт на 8 портов;
- Функция антизависания РоЕ устройств РоЕ Keep Alive;
- 2 SFP порта (1000Base-X) для передачи Ethernet по оптике с помощью SFP-модулей (в комплект не входят);
- Поддержка функций L2, L2+ уровня (VLAN, QOS, SNMP, IGMP Snooping и т.д.);
- Настройка и управление через WEB-интерфейс/Telnet/SNMP;
- Высокая надежность сети (RSTP, MSTP, ERPS, LACP);
- Автоматическое определение MDI/MDIX;

- Размер таблицы МАС-адресов: 16К;
- Размер буфер пакетов: 12 МБ;
- Пропускная способность коммутационной матрицы: 20 Гбит/с;
- Оптический кросс для удобства подключения оптоволоконного кабеля.

4. Внешний вид и описание элементов

4.1 Внешний вид

Рис.1 Коммутатор SW-80802/WLU, внешний вид

Рис.2 Уличный коммутатор SW-80802/WLU, основные элементы

4.2 Описание элементов уличного коммутатора

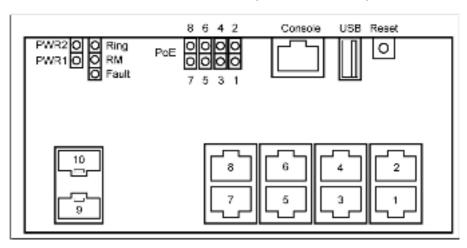


Рис. 3 Уличный коммутатор SW-80802/WLU, разъемы кнопки и индикаторы

Таб. 2 Уличный коммутатор SW-80802/WLC, назначение разъемов, кнопок и индикаторов

Обозначение	Назначение
PWR2 PWR1	LED индикаторы питания Горит – питание подается Не горит – коммутатор не подключен к сети АС 100-240V / 50 Гц или не исправен.
Ring	LED индикатор топологии «кольцо» Горит – коммутатор включен в сеть по топологии «кольцо» Мигает – топология «кольцо» используется, но не работает должным образом (ошибка) Не горит – топология «кольцо» не используется
RM	LED индикатор работы коммутатора в режиме Ring Master (используется в топологии «кольцо») Горит зеленым – коммутатор работает в режиме Ring Master Не горит – коммутатор не работает в режиме Ring Master

Fault	LED индикатор ошибки Горит зеленым – коммутатор работает в штатном режиме Горит красным – ошибка
Console	Консольный порт RJ-45 используется для управления коммутатором
USB	USB порт используется для оперативной загрузки конфигурации или прошивки
Reset	Короткое нажатие (1сек) – сохраняет текущую конфигурацию на USB носитель с именем «running config» Среднее нажатие (~4сек) – перезагрузка коммутатора Долгое нажатие (>7сек) – возврат к заводским настройкам и перезагрузка коммутатора
8 6 4 2 7 5 3 1	Разъемы RJ-45 для подключения сетевых устройств с PoE на скорости 10/100/1000 Мбит/с с помощью кабеля витой пары. LED индикаторы скорости подключения. Горит желтым – подключено сетевое устройство на скорости 10/100 Мбит/с Горит зеленым – подключено сетевое устройство на скорости 1000 Мбит/с
10 9	SFP порты для подключения сетевых устройств с оптическими портами на скорости 1Гбит/с (SFP модули в комплект поставки не входят) с помощью оптоволоконного кабеля.

5. Установка и подключение

Внимание!

- ✓ Категорически запрещается касаться элементов блока питания, находящихся под высоким напряжением.
- Для защиты оборудования от грозовых разрядов необходимо устанавливать устройства грозозащиты!
- ✓ Качественное заземление является обязательным условием подключения.
- ✓ Хранение и транспортировка уличных коммутаторов с резервной системой питания производится с демонтированной плавкой вставкой — предохранителем для ограничения разряда системы АКБ. Запрещается подключать глубоко разряженные АКБ.
- ✓ Для исключения ложных срабатываний автоматов защиты необходимо выбирать автоматы «С» с током срабатывания >4А.
- ✓ Неиспользуемые гермовводы следует закрыть заглушками. В противном случае, система обогрева может работать в неправильном режиме, также возможно образование конденсата. Это может привести к выходу уличного коммутатора из строя!

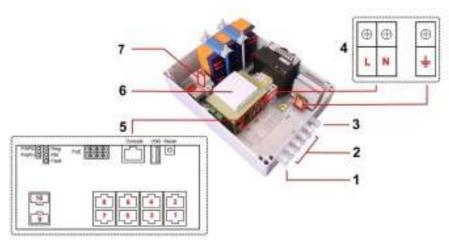


Рис. 4 Подключение уличного коммутатора SW-80802/WLU

Подключение уличного коммутатора SW-80802/WLU осуществляется в следующей последовательности:

- 1. Вставьте гермовводы в предназначенные для них отверстия в корпусе пластикового бокса (1,2,3), закрепите их пластмассовыми гайками с внутренней стороны корпуса.
- 2. Проденьте кабели витой пары через соответствующие отверстия гермовводов (2) снаружи внутрь бокса (рис.4).
- 3. Обожмите концы кабелей с внутренней стороны бокса разъемами RJ45 (рис. 5)

Рис. 5 Обжимка кабеля витой пары разъемами RJ-45

- 4. Подключите обжатые разъемами RJ-45 кабели к коммутатору (5) (разъемы 1-8) и затяните гермовводы. Для обеспечения защиты от проникновения влаги внутрь корпуса, кабели должны быть плотно укреплены в гермовводах.
- 5. Аналогично пункту 1 протяните кабель питания от сети AC 100-240V / 50 Гц внутрь корпуса через соответствующий гермоввод (3) (Ø 4-8мм), подключите кабель питания к контактам автоматического выключателя и клемме заземления (4). Затяните гермоввод.
- 6. Зачистите оптоволоконные кабели на длину 25-30 см, пропустите их в отверстия гермовводов (1), затяните резьбу гермовводов так, чтобы кабели жестко фиксировались в зажимах гермовводов.
- 7. Соблюдая все требования технологии сварки оптоволоконного кабеля, приварите пигтейлы (имеются в комплекте) к оптоволоконным жилам кабелей. Уложите оптоволоконный кабель в пазы кросса (6), следя за тем, чтобы диаметр колец не был менее 60 мм. Подключите разъемы пигтейлов к SFP модулям (не входят в комплект поставки)

- установленным предварительно в SFP разъемы коммутатора (5) (разъемы 9-10). Закройте крышку оптического кросса (6).
- 8. Вставьте плавкую вставку предохранитель в держатель (7) и его утапливанием подключите источник резервного питания в цепь питания уличного коммутатора. Включите автоматический выключатель. Аккуратно закройте крышку, затяните ее 4-мя винтами из комплекта поставки. Уличный коммутатор готов к эксплуатации.

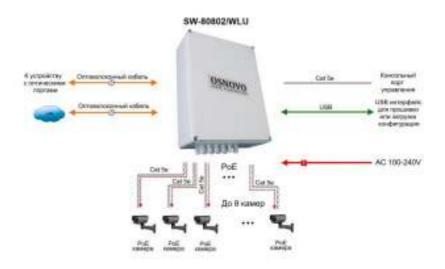


Рис.5 Типовая схема подключения коммутатора SW-80802/WLU

Рис.6 Каскадная схема подключения коммутатора SW-80802/WLU

6. Проверка работоспособности системы

После подключения кабелей к разъёмам и подачи питания на коммутатор можно убедиться в его работоспособности.

Подключите коммутатор между двумя ПК с известными IP-адресами, располагающимися в одной подсети, например, <u>192.168.1.1</u> и 192.168.1.2.

На первом компьютере (192.168.1.2) запустите командную строку (выполните команду cmd) и в появившемся окне введите команду:

ping 192.168.1.1

Если все подключено правильно, на экране монитора отобразится ответ от второго компьютера (Рис.7). Это свидетельствует об исправности коммутатора.

```
Chipping 198.164.5.4

Fidering 198.164.5.4

Fidering 198.164.1.1 with 02 hetes of does.

Employ from 198.168.1.1: total-18 time(time. TTI-888 Bapil) from 198.168.1.1: total-18 time(time. TTI-
```

Рис.7 Данные, отображающиеся на экране монитора, после использования команды Ping.

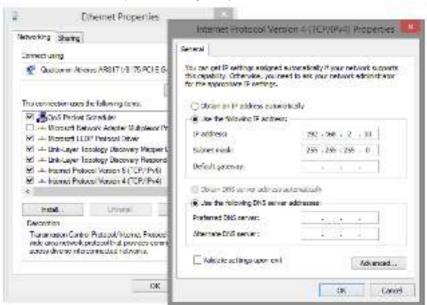
Если ответ ping не получен («Время запроса истекло»), то следует проверить соединительный кабель и IP-адреса компьютеров.

Если не все пакеты были приняты, это может свидетельствовать:

- о низком качестве кабеля;
- о неисправности коммутатора;
- о помехах в линии.

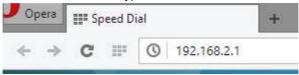
Примечание:

Причины потери в оптической линии могут быть вызваны:


- неисправностью SFP-модулей
- изгибами кабеля
- большим количеством узлов сварки
- неисправностью или неоднородностью оптоволокна.

7. Подготовка перед управлением коммутатором через WEB-интерфейс**

Web-интерфейс позволяет гибко настраивать и отслеживать состояние коммутатора, используя браузер (Google Chrome, Opera, IE и тд) из любой точки в сети.


Прежде, чем приступить к настройке коммутатора через Webинтерфейс, необходимо убедиться, что ваш ПК и коммутатор находятся в одной сети. Чтобы правильно сконфигурировать ваш ПК используйте следующую пошаговую инструкцию:

- 1. Убедитесь, что сетевая карта в вашем ПК установлена, работает и поддерживает TCP/IP протокол.
- 2. Подключите между собой коммутатор и ваш ПК, используя патчкорд RJ-45
- 3. По умолчанию IP-адрес коммутатора: **192.168.2.1.** Коммутатор и ваш ПК должны находиться в одной подсети. Измените IP адрес вашего ПК на 192.168.2.X, где X-число от 2 до 254. Пожалуйста, убедитесь, что IP-адрес, который вы назначаете вашему ПК, не совпадал с IP-адресом коммутатора.

4. Запустите Web-браузер (IE, Firefox, Chrome) на вашем ПК

5. Введите в адресную строку **192.168.2.1** (IP-адрес коммутатора) и нажмите Enter на клавиатуре.

6. Появится форма аутентификации. По умолчанию Логин: **admin.** Пароль: **admin**

В дальнейшем пароль и логин можно поменять через WEB интерфейс коммутатора.

7. После корректного ввода имени пользователя(логин) и пароля появится главное окно WEB интерфейса коммутатора

8. Управление через WEB интерфейс, основные элементы

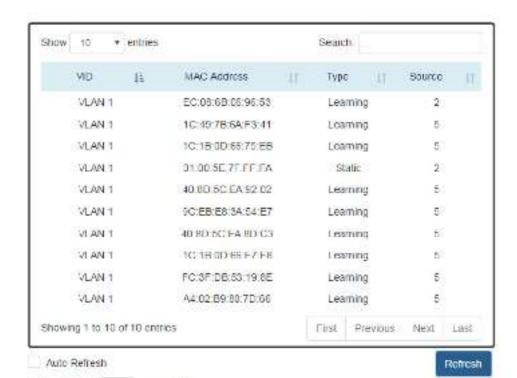
8.1 WEB интерфейс, общая информация

На данной странице WEB интерфейса коммутатора представлена общая информация о системе.

1. Когда для настройки коммутатора через WEB интерфейс используется устройство с низким разрешением видеоизображения поле «Model Information» (Информация о модели) может быть скрыто с помощью нажатия на иконку очков для того, чтобы другие элементы интерфейса были лучше видны.

Страница WEB интерфейса полностью (show model information)

Страница WEB интерфейса частично (hide model information)


- 2. После завершения конфигурирования нажмите эту иконку для сохранения текущей конфигурации в файле **«startup-config»**. Файл с настройками будет сохранен в системе пока не будет выполнен сброс настроек до заводских.
- 3. Нажатие на данную иконку удалит файл с текущей конфигурацией из системы. После выполнения сброса до заводских настроек, все настройки будут возвращены к значениям по умолчанию.
- 4. Нажатие на данную иконку перезагрузит устройство.
- 5. Нажатие на данную иконку отвечает за выход из WEB интерфейса и возврат к экрану ввода логина и пароля. Кроме того, система автоматически совершает выход по истечении таймера «timeout». Значение таймера настраивается через CLI с использованием команды «exec-timeout». Максимальное значение для таймера 30 минут.


Удобная таблица с данными

Такой тип таблицы используется для следующих таблиц с данными:

- ✓ «IPv6 Neighbor Table»
- ✓ «IGMP Snooping Table»
- ✓ «VLAN Table»
- ✓ «LLDP Table»
- ✓ «MAC Address Table»

Далее будет описано на примере «MAC Address Table» (Таблица MAC адресов), как использовать функции такого типа страниц с данными, чтобы пользователю было проще получать информацию из них.

seconds O

умолчанию «10».

Refresh Rate:

- Функция поиска (Search) позволяет пользователю искать ключевое слово в таблице данных. Поиск ведется по всем столбцам таблицы и идентифицирует данные, соответствующие критериям поиска.
- Showing 1 to 10 of 31 entries Отображает общее число записей и текущий номер записи.

- Сортирует поля с данными от меньшего к большему и наоборот от большего к меньшему.
- Назі Немоча мені Імя Возврат к первой (first)/предыдущей (previous)/следующей (next)/последней (last) странице с данными.
- Auto Refresh Выбор этого чекбокса включает функцию Auto Refresh (автообновление). Данные в таблице автоматически обновляются в зависимости от параметра Refresh Rate (время обновления)
- Это глобальный настраиваемый параметр, отвечающий за время обновления данных в таблицах при включенной функции Auto Refresh. Значение Refresh Rate может быть в пределах от 5 до 300 сек. По умолчанию значение равно 5 секундам.
- (Refresh Button)
 Кнопка принудительного обновления данных в таблице.

8.2 System (Системная информация)

System Information

Host Name	Sault 19	
Sevice Description	Industrial Pitheinet Switch with 12-part sict	10/100/100/FX & 4
Switch Lacation	XindanDist	

Арру

☑Для получения дополнительной информации о том или ином поле WEB интерфейса наведите мышкой на иконку вопроса, там где этом предусмотрено.

<u>Host Name</u> (Идентификационное имя коммутатора) — используется для более простой идентификации настраиваемого коммутатора в сети серди остальных коммутаторов. Например: CoreSwitch01. Максимальная длина для имени — 32 символа.

Следующие символы: #\'"? нельзя использовать.

<u>Device Description</u> (Описание устройства) – не доступно к изменению, задается системой. Данное поле содержит количество медных портов, оптических портов и поддержу PoE (если предусмотрено).

<u>Switch Location</u> (Местоположение коммутатора) – используется для определения местоположения коммутатора . Например: Area01. Максимальная длина для имени – 32 символа.

Следующие символы: #\"? нельзя использовать.

<u>Contact Information</u> (Контактная информация) – содержит информацию о лице, ответственном за это устройство, а также его контактные данные. Следующие символы: #\'"? нельзя использовать.

Арру (Acply Button)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.3 IPv4 Settings (Настройки протокола IPv4)

IPv4 это четвертая версия Internet Protocol. Используется в сетях с коммутацией пакетов и без установления соединения. Адрес IPv4 составляет 4 байта (32 бита) и адресное пространство ограничено 4294967296 (2^{32}) уникальными адресами. В локальной сети (LAN) используется частная сеть (Private Network). Она начинается с адреса 192.168.0.0 и содержит 60025 (2^{16}) адресов. Фреймы (пакеты) могут быть отправлены хосту только в одной и той же подсети. Например, по умолчанию IP адрес коммутатора 192.168.10.1. Когда пользователь хочет подключится к коммутатору IP адреса от 192.168.10.2 до 192.168.10.254 должны быть назначены хосту.

Pv4 Settings

IP Address	192,156.10.1
Subjectionals	251 355 255 0
Default Gareway	
DNS Server	8.8.8.5

<u>IPv4 Mode</u> (режим работы IPv4) – Предусмотрено 2 способа настройки IPv4 адреса.

Static – IP адрес задается вручную.

<u>DHCP Client</u> – IP адрес назначается службой DHCP. В таком случае поля содержащие информацию об IP адресе будут отключены для изменения.

<u>IP Address</u> (IP адрес) – назначает уникальный IP адрес в подсети для доступа к коммутатору. **Адрес по умолчанию 192.168.2.1.**

<u>Subnet Mask</u> (Маска подсети) – определяет тип подсети, к которому подключено это устройство.

<u>Default Gateway</u> (IP Адрес шлюза по умолчанию) – IP адрес маршрутизатора, который используется для подключения LAN к WAN

Apply (Apply Button)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.4 IPv6 Settings (Настройки протокола IPv6)

IPv6 это 6я версия Internet Protocol решающая проблему с ограничением адресного пространства протокола IPv4. IPv6 это протокол 3 уровня OSI (Internet Layer). Количество уникальных адресов для IPv6 составляет 2^{128} . Адрес IPv6 обычно представлен цифрами в шестнадцатеричной системе. 8 групп по 4 цифры. Каждая группа отделена символом:

8.4.1 Настройка IPv6

<u>IPv6 Mode</u> (Режим работы IPv6) – Включает (enable) или отключает (disable) IPv6. Когда протокол IPv6 включен, другие устройства могут подключаться к коммутатору. По умолчанию включено.

<u>Default Address</u> (IPv6 адрес по умолчанию) – IPv6 адрес коммутатора по умолчанию. Он автоматически сгенерирован на основе MAC адреса коммутатора и не может быть изменен вручную.

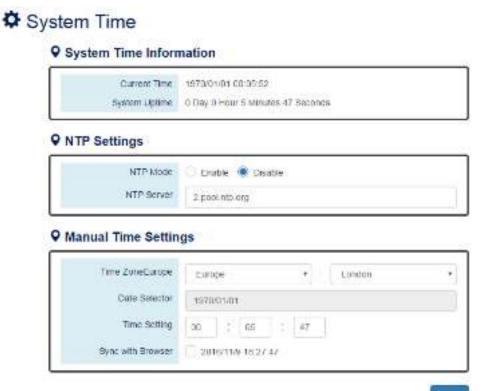
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.4.2 IPv6 Neighbor Table (Таблица «соседей» IPv6)

Pv6 Neighbor Table

IPv6 Address (IPv6 Адрес) – поле содержит IPv6 адрес «соседа»

MAC Address (MAC Адрес) – поле содержит MAC адрес «соседа»


State (Текущее состояние) – состояние подключения. Может быть 5 состояний. «DELAY» «REACHABLE» «STALE» «FAILED» «PROBE»

8.5 System Time (Системное время)

Системное время содержит в себе текущую дату и время. Время безотказной работы определяется временем после последней перезагрузки коммутатора. Коммутатор не оснащен элементом питания для сохранения системного времени в памяти. Пользователи могут настраивать часовой пояс и время вручную, синхронизировать с временем браузера (через который осуществляется настройка коммутатора), или используя службу NTP.

NTP – протокол сетевого времени. Работает по принципу клиентсервер. Клиентом выступает коммутатор, получая от сервера данные текущего времени и даты.

8.5.1 Настройка системного времени

Apply

<u>System Time Information</u> (Информация о текущем времени, дате и времени безотказной работы) – содержит следующие поля, доступные для чтения:

Current Time – текущая дата и время;

System Uptime – время безотказной работы с последней перезагрузки.

NTP Settings (Настройки протокола сетевого времени NTP) – состоит из следующих полей:

NTP Mode – включает или отключает использование протокола NTP для получения системного времени. Когда активно – использует NTP Server для синхронизации системного времени;

NTP Server – это поле отображает URL ссылку или IP адрес сервера, к которому будет проводится подключение для синхронизации системного времени.

<u>Manual Time Settings</u> (Ручная настройка времени) – перечень настроек, позволяющих вручную задавать дату и время.

Time Zone – выбор часового пояса;

Date Selector – установка даты в ручную в формате год/месяц/день;

Time Setting – установка вручную времени в формате часы:минуты:секунды

Sync with Browser – выбор этого чекбокса позволит синхронизировать время коммутатора с временем браузера, через который осуществляется управление коммутатором

Арру (Acply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.6 RSTP Configuration (Настройка протокола RSTP)

STP — это стандартный протокол (IEEE 802.1D) связующего дерева. Используется для предотвращения появления сетевых петель. Протокол RSTP восстанавливает текущую топологию сети значительно быстрее, чем STP. RSTP (IEEE 802.1.w). Время восстановления топологии при сбое не более 6 секунд (против 30-50 у STP протокола). Это делает использование RSTP протокола основным.

8.6.1 Конфигурирование RSTP. Базовая информация

RSTP Configuration

Pridge Settings

Mode	RSTP	*
Root Priority	32768	т
Hello Time	2	0
Forward Delay	15	0
Maximum Age	20	Θ

Mode (режим работы) – предлагает 2 возможных режима

RSTP – протокол STP активен, RSTP используется для резервирования;

Disable – отключает STP. Пользователи используют другой протокол для предотвращения сетевых петель.

Root Priority (значение для определения корневого моста) – используется для определения корневого моста (root bridge). Самый низкий приоритет соответствует корневому мосту. Если все коммутаторы в сети настроены на одно и тоже значение приоритета, то система выберет корневой мост для работы протокола на основе МАС адресов. Диапазон возможных значений 0 — 61440 (с шагом 4096). По умолчанию значение приоритета — 32768

<u>Hello Time</u> (интервал отправки пакетов BPDU) – используется для определения отправки пакетов BPDU для проверки текущей топологии

и состояния RSTP. Диапазон возможных значений 1-10сек. По умолчанию – 2 сек.

<u>Forward Delay</u> (задержка смены состояний) – интервал, через который порт коммутатора меняет состояние с обучения/прослушивания на пересылку. Диапазон возможных значений 4-30сек. Значение по умолчанию – 15 сек.

<u>Махітит Аде</u> (время хранения текущей конфигурации) — таймер, определяющий ожидание BPDU пакетов от корневого моста. Если устройство получает пакеты BPDU до истечения времени таймера, значение таймера будет сброшено. Кроме того, устройство отправит топологию с измененным BPDU для уведомления других устройств. Диапазон значений составляет от 6 — 40сек. Значение по умолчанию — 20 сек.

8.6.2 Настройка RSTP для портов

161.	them then O	Martin	cuts	Admer P	20	mda	а	Adminis	a.v
Porti	o.	0201		Shared	*	Auto		Fredak	
Port2	11	258		Stand	٠	Ails		Profile	9
Pnd3	ä	128		Shared	1	Auto		ENABLE	1
PoH	ū	128		Stared		Auto		Enable	
Yorks	¢.	128		Bhared		Auto	9.5	Enacle	,
Ports	ů.	120		Stared	*	Auto		Enable	3
P0:17	e.	120		Shared	*	Arte		Enable	٥,
Port8	а	320		Shared		Acts		Enable	15
Ports	n	308	- 6	Sheed	•	Asia		Francisc	8
Portiff	a .	798		Shared .	*	Asla		15468	2
Poch	G.	128		Starod	٠	Arts		Elacic	9
Portiz.	ů.	128		Shared		Auto		Enable:	

No – номер порта, где N – основан на количестве портов коммутатора.

<u>Path Cost</u> – диапазон «стоимости пути». Диапазон возможных значений от 0 – 200000000. По умолчанию значение – 0. Это означает, что расчет стоимости пути определяется системой автоматически.

Port Priority – используется для определения порта, который должен быть заблокирован при использовании топологии «кольцо». Диапазон возможных значений от 0 – 240 (кратно 16). По умолчанию значение – 128.

<u>Admin P2P</u> – тип установленного соединения для порта. P2P – полный дуплекс. Shared – полудуплекс

<u>Edge</u> – порт, который может быть подключен к устройству без STP называется EDGE портом.

Пользователь может вручную устанавливать порты коммутатора в состояние EDGE или NON-EDGE.

Значение Auto – система автоматически определяет EDGE и NON EDGE состояние для порта.

Admin STP – позволяет включать/выключать (enable/disable) поддержку STP протокола на выбранном порте.

Арру (Acply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.6.3 RSTP Status

Bridge Information

Endge ID	8,000 88 89 88 88 88 88	
Root Bridge	ves	
Root Priority	32768	
Root Port	none	
Root Path Cost	c	
Hello Time	2	
Forward Delay	16	
Max Age	20	

<u>Bridge ID</u> – это поле отображает уникальный идентификатор узла, когда он является частью сети. Идентификатор содержит 8 байт информации. Первые 2 байта занимает Bridge Priority (настраиваемый параметр), остальные 6 байтов занимает MAC адрес.

Root Bridge – корневой мост выбирается из всех коммутаторов, участвующих в топологии STP спустя несколько отправленных BPDU пакетов. Корневым мостом является устройство с наименьшим значением Root Priority. Если все устройства в дереве STP имеют одинаковый показатель Root Priority, корневой мост выбирается на основании MAC адреса.

Root Priority – этот показатель определяет корневой мост (устройство с наименьшим значением Root Priority). Если все устройства в дереве STP имеют одинаковый показатель Root Priority, корневой мост выбирается на основании MAC адреса.

Root Port – порт корневого моста с наименьшим значением Path Cost. Если в поле Root Port отображается NONE, то это устройство является корневым мостом в топологии STP.

Root Path Cost – «стоимость» пути от текущего узла до корневого моста в топологии STP.

<u>Hello Time</u> – используется для определения интервала отправки BPDU пакетов, для проверки состояния и топологии дерева RSTP.

<u>Forward Delay</u> – задержка перед сменой состояний порта с обучения/прослушивания на пересылку.

<u>Max Age</u> – максимальное время ожидания BPDU пакетов от корневого моста.

Port Status

No.	Role	Path State	Port Cost	Port Priority	Oper P2P	Oper Edge
Port1	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port2	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port3	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port4	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port5	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port6	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port7	Designated	Forwarding	20000	128	Shared	Edge
Port8	Designated	Forwarding	20000	128	Shared	Edge
Port9	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port10	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port11	Disabled	Discarding	200000000	128	Shared	Non-Edge
Port12	Disabled	Discarding	200000000	128	Shared	Non-Edge

Auto Refresh

Refresh

No — количество портов от Port 1 до Port N, где N — общее количество портов коммутатора.

Role – поле отображающее текущую роль порта в STP.

Root – корневой порт, подключен к корневому мосту, имеет наименьшее значение Root Path Cost.

Designated – назначенный порт, который отправляет самый корректный BPDU другим узлам.

Alternate – альтернативный порт, который заблокирован. Порт все еще способен получать BPDU пакеты от другого моста. При получении BPDU пакета может переслать его в другой сегмент.

Васкир — резервный порт, который заблокирован. Соответствует по своему состоянию порту Alternate. Также способен получать BPDU пакеты от того же самого моста. При получении BPDU пакета может переслать его в другой сегмент.

Disabled – порт отключен.

Path State – поле отображающее текущее состояние порта в STP.

Discarding – состояние порта «Отключен» «Блокирован» «Прослушивание». Входящие пакеты будут отброшены, запоминание МАС адресов остановлено.

Learning – порт запоминает MAC адреса, но входящие пакеты будут отброшены.

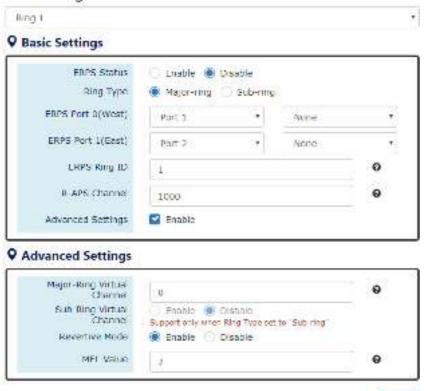
Forwarding – порт пересылает входящие пакеты на основе ранее запомненных в таблицу MAC адресов.

<u>Port Cost</u> – стоимость пути от порта до корневого моста. STP протокол предполагает, что значение стоимости пути определяется скоростью доступа подключений. Значения стоимости пути RSTP по умолчанию приведены в таблице ниже:

Speed	RSTP Path Cost	Speed	RSTP Path Cost
4 Mbps	5,000,000	1000 Mbps (1Gbps)	20,000
10 Mbps	2,000,000	2000 Mbps (2 Gbps)	10,000
16 Mbps	1,250,000	10000 Mbps (10 Gbps)	2,000
100 Mbps	200,000		

Port Priority – значение, которое определяет, является ли устройство корневым мостом в топологии STP. Порт с наименьшим значением Port Priority имеет больший приоритет среди остальных узлов.

<u>Oper. P2P</u> – это поле отображает тип соединения STP. P2P означает «точка – точка», shared – соединение типа «точка-многоточка»


<u>Oper. Edge</u> – поле отображает состояние типа EDGE для порта в топологии STP.

8.7 ERPS (Протокол защиты трафика от петель в кольцевой топологии)

ERPS является протоколом защиты сетевого трафика от петель в кольцевой топологии. Является альтернативным STP протоколу методом борьбы с сетевыми петлями. Использует специальные пакеты для опроса узлов сети и восстановления топологии. Если в сети возникает ошибка ERPS пересылает трафик по резервному пути. Время восстановления топологии с применением ERPS менее 50мс.

8.7.1 Настройка ERPS

ERPS Configuration

33

Apply

Basic Settings (базовые настройки):

<u>ERPS Status</u> – 2 возможных состояния «включено» (enable) или «отключено» (disable). По умолчанию поддержка протокола ERPS включена;

<u>ERPS Port 0</u> – также называется «WEST» порт. Выберите один из портов коммутатора для выполнения роли Port 0 в топологии ERPS;

<u>ERPS Port 1</u> – также называется «EAST» порт. Выберите один из портов коммутатора для выполнения роли Port 1 в топологии ERPS;

Примечание: Только один порт коммутатора может быть выбран для выполнения роли ERPS Port 0 или ERPS Port 1

Role	Description
Owner	There is only one "Owner" in the ERPS ring topology. The Owner is responsible for blocking the traffic in RPL and protects one side of the RPL.
Neighbor	There is only one "Neighbor" in the ERPS ring topology. The Neighbor is the port connected with the Owner port and protects another side of the RPL.
None	The "None" implies that theport is other than an Owner or aNeighbor.

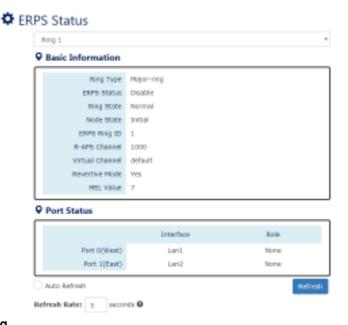
<u>ERPS Ring ID</u> – идентификатор кольца. Участники кольца должны иметь один и тот же ERPS Ring ID. Диапазон ERPS Ring ID от 1 до 239. Значение по умолчанию 1.

R-APS Channel – канал R-APS Channel используется для пересылки ERPS информации и сопоставляется с идентификаторами VLAN. Эти VLAN ID не могут быть настроены как VLAN ID для обычного сетевого трафика. Участники кольца должны иметь одинаковое значение R-APS Channel. Диапазон возможных значений от 1 до 4094. Значение R-APS Channel по умолчанию 1000.

Advanced Settings (расширенный настройки). Данное поле отображается, когда отмечен галкой чекбокс «Advanced Settings» в основных настройках ERPS (Basic Settings)

Major-RingVirtual Channel – это поле используется для конфигурирования особого виртуального канала для передачи пакетов управления от суб кольца (sub-ring) через основное кольцо (major ring)

<u>Sub-Ring Virtual Channel</u> – включить (enable) или выключить (disable) использование виртуального канала в суб-кольце. Когда виртуальный


канал в суб-кольце включен, ERPS протокол передает пакеты через сконфигурированный виртуальный канал.

Revertive Mode — реверсивный режим работы ERPS. Включить / выключить (enable/disable). Если реверсивный режим ERPS включен, заблокированная ссылка вернется к RPL после того, как неудачная ссылка будет восстановлена. По умолчанию реверсивный режим ERPS включен.

<u>MEL Value</u> – значение подразумевает MEG уровень. Значение MEL содержится в R-APS PDU пакетах. Диапазон возможных значений от 0 до 7. Значение по умолчанию 7.

Аррум (Acply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.7.2 ERPS Status (сводная информация о ERPS)

ERPS Ring

Выбор из 3х поддерживаемых коммутатором колец. Выбор осуществляется из выпадающего списка.

Basic Information

Ring Type – тип выбранного кольца ERPS. Major ring (основное кольцо), Sub-Ring with virtual channel (суб-кольцо с виртуальным каналом), Sub-ring wihout virtual channel (суб-кольцо без виртуального канала)

<u>ERPS Status</u> – статус ERPS для выбранного кольца. Включено (enable), Выключено (disable).

Ring State – 2 состояния для ERPS колец: Normal (нормальное), Abnormal (ненормальное).

<u>Node state</u> – состояние отдельных узлов ERPS. Существует 4 состояния:

- ✓ Initial ERPS протокол выключен для выбранного кольца;
- ✓ Idle ERPS протокол включен для выбранного кольца и ERPS кольцо находится под управлением владельца (RPL Owner);
- ✓ Pending ERPS протокол включен в выбранном кольце. ERPS кольцо восстановлено из состояния защиты (Protection) и находится в ожидании;
- ✓ Protection ERPS протокол включен для выбранного кольца, но одно из соединений нарушено. RPL переходит на пересылку для поддержания работоспособности кольца.

ERPS Ring ID – ID для идентификации выбранного ERPS кольца

R-APS Channel – это поле отображает сконфигурированный R-APS канал.

<u>Virtual Channel</u> – это поле отображает информацию о виртуальном канале для суб кольца. Это поле отображает статус «default» (по умолчанию), если виртуальный канал повторяет R-APS канал.

Revertive Mode – отображает состояние режима Revertive, включено (yes), отключено (No).

MEL Value – отображает настроенное значение MEL.

Port Status

<u>Interface</u> – настроенный порт представляет ERPS порт 0/1 в ERPS протоколе

Role – отображает роль для настроенного порта.

8.8 SNMP (простой протокол сетевого управления)

SNMP — простой протокол сетевого управления, является стандартом для получения и структурирования информации с управляемого коммутатора. С помощью SNMP можно частично изменять информацию для изменения поведения устройств. Обычно SNMP используется для мониторинга сети. Пользователи могут удаленно запрашивать информацию от устройств через SNMP.

Управляемые коммутаторы поддерживают протоколы SNMP v1, v2c, v3. Протоколы SNMP v1, v2c используют для аутентификации командную строку «только для чтения» и «чтение/запись». Протокол SNMP v3 требует аутентификацию на основе хеширования (md5 или SHA). Это делает использование SNMP v3 более безопасным. Подробная информация о разнице в версиях протокола SNMP дана в таблице ниже

Version	Web Setting	Authentication	Encryption	Method
V1.8	Read Only Community	Community String	No	String match for authentication
V20	Read-Write Community	Community String	No	String match for authentication
v3	Security Level – No Authentication, No Privacy	No	No	Access by an account (admin or user)
	Security Level – Authentication, No Privacy	MD5 / SHA	No	Access by an account (admin or user) and password with more than 8 characters, which is based on MD5 or SHA.
	Security Level – Authentication, Privacy	MD8 / SHA	Yes AES / DES	Access by an account (admin or user) and password more than 8 characters, which is based on MD5 or SHA. The data encryption is based on AES or DES and the key requires 8 to 32 characters.

8.8.1 Настройка SNMP сервера

Basic Settings (базовые настройки)

<u>SNMP Version</u> – По умолчанию включена поддержка SNMP v1, v2c, v3. Пользователи могут выбрать поддержку SNMP v1 и v2c или SNMP v3. None – означает, что сервер SNMP будет отключен.

Read Only Community — группа пользователей к серверу SNMP с правами «только для чтения». Максимальная длина для группы 32 символа. Нельзя использовать символы # \'"?

<u>Read-Write Community</u> – группа пользователей к серверу SNMP с правами «чтение/запись». Максимальная длина для группы 32 символа. Нельзя использовать символы # \'"?

SNMPv3 Settings (Настройки SNMPv3) Эта секция отображается только когда в основных настройках выставлены SNMP Version v1, v2c, v3 или SNMP v3. Предоставляются 2 учетные записи Admin и User для доступа в роли SNMP агента. Пользователи могут настраивать различные уровни безопасности для 2 учетных записей.

Security Level – 3 уровня безопасности:

No Authentication, No Privacy – без аутентификации и конфиденциальности. Доступ с помощью учетной записи Admin или User;

Authentication, No Privacy – аутентификация, без конфиденциальности. Доступ с помощью учетной записи Admin или User с паролем;

Authentication, Privacy – аутентификация, конфиденциальность. Доступ с помощью учетной записи Admin или User с паролем и шифрованием.

Authentication Type – тип аутентификации MD5 или SHA.

<u>Authentication Password</u> – строка или ключ для прохождения процесса аутентификации на сервере SNMP. Пароль будет хеширован MD5 или SHA методом перед аутентификацией. Минимальная длина пароля 8 символов. Максимальная – 32 символа. Нельзя использовать символы # \'"?

Encryption Type – 2 алгоритма шифрования AES и DES на выбор.

<u>Encryption Password</u> – строка/ключ используется для шифрования данных, отправляемых на SNMP сервер. Минимальная длина пароля 8 символов. Максимальная – 32 символа. Нельзя использовать символы # \'"?

Арру (Apply Bulton)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.8.2 Настройка SNMP Trap

Basic Settings (базовые настройки)

Autherstation Password Enchassor Type

Encryption Foreword

<u>Trap Mode</u> – По умолчанию включена поддержка SNMP v1, v2c, v3. Пользователи могут выбрать поддержку SNMP v1 и v2c или SNMP v3. None – означает, что сервер SNMP будет отключен.

ADD DES

Inform Retry – SNMP Trap отправит значение Повторить (Retry), когда Trap настроен на «V2 Inform» или «V3 Inform» режим. Диапазон возможных значений от 1 до 100. Значение по умолчанию 5.

Inform Timeout — временной интервал, использующийся для отправки Trap, когда Trap настроен на «V2 Inform» или «V3 Inform» режим. Диапазон возможных значений от 1 до 300 сек. Значение по умолчанию 1сек.

<u>Trap Receiver IP</u> – IP адрес Trap сервера для получения Trap информации.

<u>Community</u> – строка в SNMP Trap идентифицирующая устройство. Максимальная длина – 32 символа. Нельзя использовать символы # \' "?

SNMPv3 Trap/Inform Settings (Настройки Trap/Inform для SNMPv3). Эта секция с настройками активна, только если выставлен режим в Trap Mode «v3 Trap» или «v3 Inform»

<u>Username</u> – особое имя пользователя для аутентификации на SNMP Trap сервере.

Engine ID – идентификатор приложения SNMP.

Security Level – уровни безопасности:

No Authentication, No Privacy – без аутентификации и конфиденциальности. Доступ с использованием только имени пользователя (Username)

Authentication, No Privacy – аутентификация, без конфиденциальности. Доступ с использованием только имени пользователя (Username) с паролем;

Authentication, Privacy – аутентификация, конфиденциальность. Доступ с использованием только имени пользователя (Username) с паролем и шифрованием.

Authentication Type – 2 алгоритма хеширования MD5 или SHA на выбор.

<u>Authentication Password</u> – строка/ключ для прохождения процесса аутентификации к SNMP Trap серверу. Пароль будет хеширован MD5 или SHA методом перед аутентификацией. Минимальная длина пароля 8 символов. Максимальная – 32 символа. Нельзя использовать символы # \'"?

Encryption Type – 2 алгоритма шифрования AES и DES на выбор.

<u>Encryption Password</u> – строка/ключ используется для шифрования данных, отправляемых на SNMP Trap сервер.

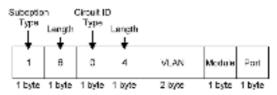
Минимальная длина пароля 8 символов. Максимальная — 32 символа. Нельзя использовать символы # \'"?

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.9 DHCP (Настройка протокола DHCP)

DHCP Сервер/Клиент

DHCP это протокол динамической настройки узла, является стандартизированным протоколом, используемым в IP сетях. DHCP сервер содержит пул IP адресов и когда DHCP клиент запрашивает IP адрес, DHCP сервер выбирает его из пула адресов и назначает этому DHCP клиенту. DHCP также управляет IP информацией, такой как Шлюз по умолчанию (Default Gateway) и DNS сервер. DHCP очень удобен для настройки параметров нескольких устройств сразу. Только администратор может включить DHCP клиент для каждого устройства и настроить DHCP клиент. Далее клиенты получат уникальные IP адреса и другие настройки IP для подключения к сети.


DHCP Server Binding

Помимо динамического распределения IP адресов между клиентами DHCP сервер также позволяет вручную задавать статичный IP адрес для устройства с определенным MAC адресом. Такая функция называется DHCP Server Binding.

DHCP Relay/Option82

В крупной сети может существовать несколько подсетей и DHCP клиент не может быть обслужен DHCP серверами напрямую. В этом случае необходим агент для ретрансляции (relay agent), который может помочь передать фреймы на сервера DHCP.

Опция 82 (Option82) информационный это вариант идентификации клиентов на основе Circuit ID и Remote ID. Circuit ID это идентификатор, содержащий имя и VLAN информацию. Remote ID это идентификатор удаленного узла (агента ретрансляции, relay agent). DHCP сервер может назначать IP адреса клиентам в соответствии с Option IΡ 82 сделав процесс назначения адресов более контролируемым. Формат фрейма Circuit ID представлен ниже:

VLAN – это поле в фрейме предназначено для идентификации VLAN ID, по умолчанию установлено на 1

Module – часть номеров для устройства, отправляющего DHCP запрос. Для коммутаторов этот байт всегда равен 0.

Port – номер порта, который идентифицирует входящий DHCP запрос от DHCP клиента.

Формат фрейма **Remote ID** представлен ниже:

MAC Address – по умолчанию содержит MAC адрес DHCP relay agent

8.9.1 Настройка DHCP клиента

Pv4 Settings

IPv4 Mode

Выберите «DHCP Client» чтобы включить режим DHCP клиента. Система отправляет «discovery» фрейм в сеть и пытается получить IP адрес от сервера DHCP.

После включения «DHCP Client» режима, пользователям необходимо подключиться к консольному порту (Console Port) и для получения IP адреса ввести команду в CLI «show ip address».

Арру (Acply Button)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.9.2 Настройка информации DHCP сервера

<u>Server Status</u> – поле отображает статус DHCP сервера: Down (He работает) UP (Работает). Информация только для чтения.

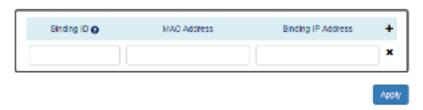
Server Mode – вкл/выкл функции DHCP сервера.

<u>Start IP Address</u> – начальный IP адрес пула IP адресов для DHCP сервера.

End IP Address — конечный IP адрес пула IP адресов для DHCP сервера. Должен быть в одной подсети с Start IP Address

<u>Default Gateway</u> – IP адрес шлюза по умолчанию, DHCP клиенты используют его, чтобы выйти в WAN. Должен находится в одной подсети с IP адресом самого коммутатора

DNS Server – DNS сервер присваивает URL DHCP клиентам вместо IP адресов.


<u>Lease Time</u> – DHCP сервер арендует IP адрес для устройства на некоторое время. По истечении времени аренды DHCP сервер может назначить устройству другой свободный адрес из указанного пула IP адресов.

Apply (Apply Button)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.9.3 Настройка привязки информации к DHCP серверу

DHCP Server Binding

<u>Binding ID</u> – идентификатор привязки. Диапазон возможных значений от 1 до 32.

MAC Address – устройство с указанным в этом поле MAC адресом будет соответствовать статическому IP адресу привязки.

Binding IP Address – статический IP адрес, связан с MAC адресом из поля (Mac Address)

+Добавить DHCP привязку

X Удалить DHCP привязку

Аррум (Acply Bulton)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.9.4 Настройка DHCP relay информации

Relay Basic Settings (базовые настройки ретрансляции DHCP Relay)

Relay Mode – вкл/выкл функцию ретрансляции DHCP запросов

Relay Option82 – вкл/выкл ретрансляцию DHCP запросов с включенной опцией 82 (описано в начале раздела)

<u>Helper Address 1 - 4</u> - 4 IP адреса, предоставленные DHCP сервером DHCP клиентам, сохраненные в резервную копию.

Relay Untrust (Выбор «ненадежного» порта)

No – номер порта от 1 до N, где N – общее число портов коммутатора.

<u>Untrust Status</u> – вкл/выкл статус «ненадежного» порта. Система будет отбрасывать фреймы DHCP управления на выбранном порте.

Арру (Apply Button)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.10 РоЕ (Настройка РоЕ на портах)

Power over Ethernet (PoE) позволяет коммутатору передавать питание вместе с данными по кабелю витой пары к сетевому устройству. Существует 2 стандарта PoE: IEEE 802.3af обеспечивает до 15.4 Вт и IEEE 802.3at обеспечивает до 25.5 Вт.

8.10.1 Информация о настройках РоЕ

PoE Configuration

No.	Mode	Force	Status	Class	Voltage	Power
Port 1		On 📵 Off	On	3	48.1V	3.6W
Port 2		On 🖲 Off	om	0	-	-
Port 3		On 🖲 Off	Off	0	-	-
Port 4		○ on ● off	On	3	48.1V	2.8W
Port 5	€ Eriable ○ Disable	On 🖲 Off	Off	0		
Port 6		On 🕟 Off	om	0	-	-
Port 7		On 📵 Off	om	0	-	-
Port 8		O on 📵 off	om	0	-	-

Apply

 ${\bf No}$ — номер порта от 1 до N, где N общее количество PoE портов коммутатора.

Mode – вкл/выкл РоЕ на выбранном порте.

<u>Status</u> – отображает статус РоЕ для выбранного порта. Информация только для чтения.

On – PoE вкл. и к порту подлючено PoE устройство;

Off – PoE вкл., но к порту подключено не PoE устройство;

Disabled – PoE отключено для выбранного порта.

<u>Class</u> – поле отображает класс устройства основанный на стандарте IEEE 802.3 af/at

Voltage – поле отображает выходное напряжение в вольтах.

Power – поле отображает мощность выдаваемую портом на PoE устройство. Порт может выдать до 30 Вт мощности, PoE устройства могут потреблять до 25,5 Вт.

Арру (Apply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.10.2 Настройка функции «PoE Keep Alive»

Функция <u>PoE Keep Alive</u> позволяет дистанционно контролировать сетевую активность подключенных PoE устройств. Если подключенное устройство в течение заданного времени перестает отвечать на запросы, коммутатор перезагружает PoE порт.

PoE Keep Alive

 ${\bf No}$ — номер порта от 1 до N, где N общее количество PoE портов коммутатора.

<u>Detect</u> – вкл/выкл отслеживание PD (PoE устройство) на выбранном порте. Когда вкл. Система пингует заданный IP адрес с заданным интервалом (Ping Interval)

<u>IP Address</u> – IP адрес, который система пинугет с интервалом (Ping Interval) для того чтобы убедится, что подключенное у порту PoE устройство функционирует в нормальном режиме.

<u>Ping Interval</u> — интервал (от 1 до 65565сек) через который система пингует удаленный IP адрес PoE устройства с целью проверки его работоспособности. Значение по умолчанию 30 сек.

<u>Hold Time</u> – время, после которого система, в случае неудачной команды PING, снова попытается отправить запрос на удаленное РоЕ устройство. Диапазон возможных значений от 1 до 65535 сек. Значение по умолчанию 60 сек.

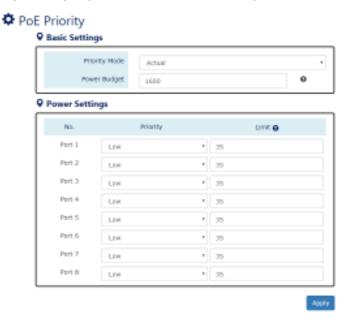
Арру (Apply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.10.3 Настройка подачи РоЕ на порты по расписанию

<u>Port Selector</u> – выбор порта, на котором будет настроена подача РоЕ по расписанию. От 1 до N, где N общее количество РоЕ портов коммутатора.

Enable – включить для каждого дня

Week – включить для каждого дня в неделю по отдельности. Вос.-Суб.


Hour – время в часах для каждого дня от 00 00 до 23 00

Пользователи могут выбрать флажок «Неделя и часы» в таблице, чтобы включить подачу РоЕ в определенное время. Например, если пользователь хочет включить подачу РоЕ только в понедельник с 6 00 до 7 00 и в среду с 13 00 до 15 00, должны быть выбраны следующие флажки Mon-06 Mon-07 Wed-13 Wed-14 WED-15.

Время базируется на системном времени, установленном в соответствующем разделе WEB интерфейса коммутатора

Арру (Apply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.10.4 Настройка приоритета подачи РоЕ на порты

Basic Settings (основные настройки)

<u>Priority Mode</u> – выбор режима приоритезации подачи PoE. Доступно 3 режима:

- ✓ Actual обеспечение мощности РоЕ в соответствии с требованием от питаемого устройства;
- ✓ Class обеспечение мощности РоЕ согласно классу подключаемого устройства (на основании стандарта IEEE 802.3af/at);
- ✓ Static обеспечение мощности РоЕ с фиксированным значением на основании поля Limit, задаваемого пользователем;

<u>Power Budget</u> – поле определяет максимальную мощность PoE, которая может быть отдана всем подключенным PoE устройствам. Диапазон значений 0-5000Ватт. Значение по умолчанию – 1600 Ватт.

Power Settings (настройки питания)

No — номер порта от 1 до N, где N — общее количество портов коммутатора

Priority – значение приоритета подачи РоЕ для выбранного порта.

- ✓ High высокий приоритет;
- ✓ Middle средний приоритет;
- ✓ Low низкий приоритет.

<u>Limit</u> – установка лимита РоЕ мощности для выбранного порта. Система будет ограничивать мощность выдаваемую на порт без проверки реальной потребляемой мощности подключенного РоЕ устройства. Поле активно, если выбран режим приоритезации Static. Диапазон возможных значений 4 – 35 Ватт. Значение по умолчанию – 35 Ватт.

Кнопка подтверждения сохранения внесенных

данных. После ее нажатия внесенные изменения будут применены.

8.11 ModBUS/TCP (Настройка промышленного протокола ModBUS/TCP)

Modbus – это открытый коммуникационный протокол. основанный архитектуре master-slave И работающий на (PLC). программируемыми логическими контроллерами применяется в промышленном сегменте для организации связи между электронными устройствами.

Modbus/TCP использует локальную сеть для работы и позволяет устройствам с поддержкой Modbus протокола обмениваться Modbus сообщениями. Для расшифровки сообщений Modbus необходимо использовать утилиты, например, Modscan. В коммутаторах Modbus сообщения содержат системную информацию, информацию о прошивке, информацию о портах, о пакетах и тд.

8.11.1 Формат данных протокола Modbus/TCP

Основные 4 типа данных, используемые Modbus/TCP это:

Di	ata Access Type	Function Code	Function Name
Dit Assess	Physical Discrete Inputs	2	Read Discrete Inputs
Bit Access	Internal Bits or Physical Coils	1	Read Coils
Word Access	Physical Input Registers	4	Read Input Registers
(16-bit Access)	Physical Output Registers	3	Read Holding Registers

8.11.2 Обработка данных в Modbus/TCP

Следующие примеры предполагают, что общее количество портов равно 8. Таблица ниже для кода функции №3 (чтение значений из нескольких регистров хранения (Read Holding Registers)) и для кода функции №6 (запись значения в один регистр хранения (Preset Single Register)).

Address Offset	Data Type	Interpretation	Description
System Information			
			Port 1 to Port 8 Status
			0x0000: Disable
0x0000 to		. uma	0x0001: Enable
0x0008	1 word	HEX	Port 1 to Port 8 Status Configuration
			0x0000: Disable
			0x0001: Enable

Таблица ниже предназначена для кода функции №4 (Input Registers). Значение начинается с адреса Modbus 30001. Например, смещение адреса 0x0000H равно адресу Modbus 30001, а смещение адреса 0x0030H равно адресу Modbus 30049. Вся информация, считываемая с коммутаторов хранится в режиме HEX и пользователи могут ссылаться на таблицу ASCII для сопоставления полученных данных (например, 0x4B= "K", 0x74= "t").

Address Offset	Data Type	Interpretation	Description
System Information			Product Name = "MT-0804G"
			Word 0 Hi byte = 'M'
			Word 0 Lo byte = 'T'
			Word 1 Hi byte = 17
0x0030	20 words	ASCII	Word 1 Lo byte = '0'
			Word 2 HI byte = '8'
			Word 2 Lo byte = '0'
			Word 3 HI byte = '4'
			Word 3 Lo byte = "G"
0x0050	1 word		Product Serial Number
0x0051	2 words	HEX	Firmware Version For example: Word 0 = 0x0103 Word 1 = 0x0200
			Firmware version is 1.3.2

Address Offset	Data Type	Interpretation	Description
System Information			Firmware Release Date For example: Word 0 = 0x1719
0x0053	2 words	HEX	Word 1 - 0x1508
			Firmware was released on 2015-06-17 19 piclock
			Ethernet MAC Address Ex: MAC = 01:02:03:0A:0B:0C Word 0 Hi byte = 0x01
	3 words	HEX	Word 0 Lo byte = 0x02
0x0055			Word 1 HI byte = 0x03
			Word 1 Lo byte = 0x0A
			Word 2 HI byte = 0x0B
			Word 2 Lo byte = 0x0C
			Power 1
0x0058	1 word	HEX	0x0000: Off
	1 110101		0x00001: On

Address Offset	Data Type	Interpretation	Description
			Power 2
0x0059	1 word	HEX	0x0000: Off
			0x0001: On
			Fault LED Status
	1 word	HEX	0x0000: Boot error
0x005A			0x0001: Normal
			0x0002: Fault
			D01
0x0082	1 word	HEX	0x0000: Off
			0x0001: On

Address Offset	Data Type	Interpretation	Description
Port information			
			Port 1 to Port 8 Status
	1 word		0x0000: Link down
0x1000 to 0x1008		HEX	0x0001: Link up
32,1006			0x0002: Disable
			0xFFFF: No port
			Port 1 to Port 8 Speed
			0x0000; 10M-Haif
0x1100 te-:	2000000	20020	0x0001: 10M-Full
0x1108	1 word	HEX	0x0002: 100M-Haif
			0x0003; 100M-Full
			OxFFFF: No port
	1 word	HEX	Port 1 to Port 8 Flow Ctrl
0x1200 to 0			0x0000: Off
0x1208			0x0001: On
			OxFFFF: No port
			Port 1 to Port 8 Description Port Description = "100Tx,R,45 Word 0 Hir byte = 11"
0x1300 to			Word 0 Lo byte = 0
0x1313 (Port 1)			Word 1 HI byte = 0'
0x131410			Word 1 Lo byte = T
0x1327 (Port 2)	20 words	ASCII	And a co syle - 1
(1)			Word 4 Hi byte = 4
0x138C to			Word 4 Lo byte = '5'
0x139F (Port 9)			Word 5 HI byle = "
			Word 5 Lo byte = 10'
			more a co byte - o

Packet Information			
Address Offset	Data Type	Interpretation	Description
0x2000 to 0x200F	2 words	HEX	Port 1 to Port 8 Tx Packets Ex: port 1 Tx Packet Amount = 13248635 Received Modbus response: 0x13248635 Word 0 = 1324 Word 1 = 8635

Address Offset	Data Type	Interpretation	Description
0x2080 to 0x208F	2 words	HEX	Part 1 to Part 8 Tx Bytes Ex: part 1 Tx Btyes Amount = 13248535 Received Modbus response: 0x13248635 Word 0 = 1324 Word 1 = 8636
0x2100 to 0x21(YY*2-1)	2 words	HEX	Part 1 to YY Rx Packets Ex: port 1 Rx Packet Amount = 13249535 Received Modbus response: 0x13248635 Word 0 = 1324 Word 1 = 8635
0x2180 to 0x218F	2 words	HEX	Port 1 to Port 8 Rx Bytes Ex: port 1 Rx Btyes Amount = 13249535 Received Modbus response: 0x13243635 Word 0 = 1324 Word 1 = 8635

8.11.3 Настройка работы Modbust/TCP протокола

Modbus Mode – вкл/выкл (enable/disable) протокол Modbus/TCP

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.12 UPnP (набор протоколов Universal Plug and Play)

UPnP (Universal Plug and Play) это набор сетевых протоколов, позволяющий сетевым устройствам легко обнаруживать друг друга в сети. Набор протоколов UPnP расширяет технологию «plug&play» для подключений к сетевым устройствам без возможности конфигурирования (неуправляемые устройства). Когда UPnP устройство, такое как сетевой принтер, Wi-Fi точка доступа или

мобильное устройство подключается к сети, оно автоматически создаст текущую рабочую конфигурацию с другим устройством.

8.12.1 Настройка UPnP

UPnP Mode – вкл/выкл (enable/disable) UPnP набор протоколов.

<u>Advertisement Interval</u> – промежуток времени используемый для отправки advertisement фрейма. Значение может быть в пределах от 300 до 86400 сек. Значение по умолчанию 1800сек.

(Арріу Вийзіі) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.13 Port Management (Управление портами)

Раздел WEB интерфейса «Управление портами» содержит поле «Description» (описание), возможность вкл/выкл определенные порты, настраивать скорость передачи (дуплекс/полудуплес), вкл/выкл Flow Control (управление потоком передачи данных). Пользователи могут получать такую информацию, как состояние подключения, скорость, количество переданных и полученных байт данных, PoE статус. Все это является очень полезным для администратора при управлении коммутатором.

8.13.1 Настройка портов

Port Settings

Apply

 ${\bf \underline{No}}$ — номер порта от 1 до N, где N — общее количество портов коммутатора.

<u>Description</u> – поле «Описание» может оказаться полезным для администратора. При заполнении в дальнейшем поможет понять разницу между портами. Максимальная длина – 32 символа. Нельзя использовать символы #\"?

<u>Link Status</u> – поле отображает текущее состояние порта, UP (соединение установлено), Down (соединение не установлено), Disable (отключен).

Admin Status – вкл/выкл (enable/disable) статус Admin на выбранном порте. Данный режим ограничивает передачу на данный порт.

Примечание. Администратор системы может отключить неиспользуемый порт, чтобы предотвратить подключение непредвиденных устройств к нему

<u>Speed</u> – пользователи могут вручную выставлять на выбранном порте скорость и дуплекс или выставить режим auto.

<u>Auto</u> – Порт работает согласно стандарту IEEE 802.3uб автоматически согласуя скорость с подключенным устройством;

<u>1000М-Full</u> – порт передает данные со скоростью 1000Мбит/с в режиме полного дуплекса;

1000M-Half – порт передает данные со скоростью 1000Мбит/с в режиме полудуплекса;

<u>100M-Full</u> – порт передает данные со скоростью 100Мбит/с в режиме полного дуплекса;

100M-Half – порт передает данные со скоростью 100Мбит/с в режиме полудуплекса;

10M-Full – порт передает данные со скоростью 10Мбит/с в режиме полного дуплекса;

<u>10M-Half</u> – порт передает данные со скоростью 10Мбит/с в режиме полудуплекса.

Flow Control – вкл/выкл (enable/disable) управление потоком данных, если в поле Speed выставлено Auto. Flow Control предотвращает потерю сетевого трафика при перегрузке сети.

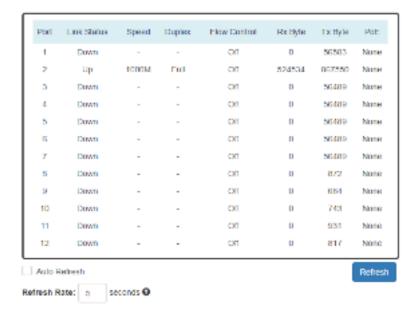
Артіу (Арру Button) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

SFP DDM Status (данные самодиагностики SFP)

<u>SFP Port Selector</u> – выбор порта, к которому подключен SFP модуль для отображения DDM информации.

<u>Transceiver Info</u> — если SFP модуль не установлен в SFP слот, информация не может быть прочитана и в поле будет стоять «-». Если SFP модуль присутствует, то будет отображена следующая информация:

- ✓ Vendor Name поле содержит информацию об имени производителя или бренде SFP модуля;
- ✓ Part Number поле содержит название модели (номер) SFP модуля;
- ✓ Transceiver Туре поле содержит информацию о максимальной скорости для модуля и о типе оптоволоконного кабеля (одномод/мультимод). Если модуль не установлен в поле будет «Unknown»
- ✓ Laser Wavelength поле содержит данные о рабочей длине волны для установленного sfp модуля;
- ✓ Link Length поле содержит данные о максимальной длине соединения между SFP модулями.


DDM Module (данные самодиагностики DDM)

<u>Real Time Value</u> – данный раздел содержит такие данные как: температура, вольтаж, потребляемый ток, мощности передатчика и мощность приемника.

<u>Alarm Warning</u> – сконфигурированные значения тревоги и системных предупреждений. Предусмотрено 5 типов информации (температура, вольтаж, потребляемый ток, мощности передатчика и мощность приемника) и 4 типа уровней оповещений (высокий уровень / низкий уровень)

8.13.2 Статус портов

Port Status

<u>Port</u> – отображает номер порта от 1 до N, где N – общее количество портов коммутатора.

<u>Link Status</u> – поле отображает текущее состояние порта, UP (соединение установлено), Down (соединение не установлено), Disable (отключен).

Speed – отображает текущую скорость порта в бит/с. Если порт не подключен, отображается «-».

<u>Duplex</u> – отображает режим передачи данных. Full (полный дуплекс) Half – полудуплекс.

Flow Control – отображает состояние функции Flow Control. On (вкл) Off (выкл.)

Rx Byte – количество принятых байтов.

<u>Tx Byte</u> – количество переданных байтов.

<u>РоЕ</u> – Отображает состояние функции РоЕ на порте.

Delivery – подключено РоЕ устройство, РоЕ передается;

No PD - подключено устройство без PoE;

Disabled – функция PoE отключена на порте;

None – порт не поддерживает PoE.

Примечание: Это информация отображается только на модели коммутатора с поддержкой РоЕ.

Нажатие вручную кнопки REFRESH принудительно обновит данные в таблице на актуальные.

8.14 IGMP Snooping (Управление multicast рассылкой)

IGMP — протокол управления групповой (multicast) передачей данных в IP сетях. Использование IGMP позволяет снизить негативно влияние multicast трафика на сеть. Коммутаторы, работающие на 2 уровне не могут обработать IGMP информацию.

Функция IGMP Snooping дает возможность «прослушивать» коммутатору IGMP связи между хостами и маршрутизаторами и поддерживать таблицу с IP адресами multicast рассылки и участниками группы.

Использование IGMP Snooping поможет хостам в сети не получать лишний multicast трафик от группы, которая не входит в состав первоначальной определенной группы.

8.14.1 Настройка IGMP Snooping

IGMP Snooping Settings

Basic Setting

Mode – вкл/выкл (enable/disable) функцию IGMP Snooping

Querier Settings

Querier Mode – вкл/выкл (enable/disable) функцию опрашивания IGMP Snooping. Если включено – система отправляет в сеть запросы IGMP Snooping v1 и V2;

Querier Period – интервал отправки запросов IGMP Snooping. Диапазон значений от 1 до 3600сек. Значение по умолчанию – 125 сек;

Query Max Response Time – время ожидания ответа участника IGMP группы. Используется для удаления IGMP информации из группы, если ни один из участников не ответил на запрос.

Apply (Apply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.14.2 Таблица IGMP Snooping

IGMP Snooping Table

Multicast IP – IP адрес multicast группы.

Group – отображает номера портов – участников группы.

8.15 IEEE 802.1Q VLAN (Логическая «виртуальная» локальная сеть)

VLAN или логическая «виртуальная» локальная сеть это функция, упрощающая планирование сети. Устройства участники VLAN могут быть расположены где угодно и объедены разными способами (по меди, по оптоволоконному кабелю и тд.), но работают как если бы они находились в одной и той же локальной сети.

IEEE 802.1Q предполагает тегирование VLAN трафика, путем добавления в пакет особого заголовка. Несколько VLAN групп могут передаваться по общему соединению – VLAN trunk'y.

Максимальное количество VLAN в сети Ethernet 4096. VLAN 0 и VLAN 4095 зарезервированы системой и не могут быть использованы для конфигурирования.

8.15.1 VLAN Q-in-Q

VLAN Q-in-Q также называемая Stacked VLAN это расширение стандартной IEEE 802.1Q VLAN. VLAN Q-in-Q поддерживает 4096*4096 VLAN групп. VLAN Q-in-Q может использовать порт в роли провайдера, пользователя или туннеля для различных приложений.

Заголовок Stacked VLAN содержит 2 заголовка формата 802.1Q с различным TPID. TPID "0x88A8" это внешний тег по умолчанию, а TPID "0x8100" является внутренним тегом для 802.1Q VLAN.

8.15.2 Настройка 802.1Q VLAN

802.1Q VLAN Settings

Management VLAN

<u>VLAN ID</u> – используется для удобного и простого управления VLAN. Только через порты такой VLAN можно получить доступ к управлению коммутатором через Ethernet.

VLAN Member Settings

<u>VLAN ID</u> – уникальный идентификатор присвоенный настраиваемой VLAN группе. Диапазон возможных значений от 1 до 4094;

<u>NAME</u> – имя для идентификации VLAN группы среди остальных. Максимальная длина – 32 символа.

Нельзя использовать символы #\"?

<u>Untagged Ports</u> – выберите нетегированные (untagged) порты VLAN группы. Система удаляет VLAN тег перед передачей трафика с порта,

который настроен как нетегированный. Чаще всего такой порт подключен к конечному устройству, принадлежащему этой VLAN.

<u>Tagged Ports</u> – выберите порты, которые будут отмечены как тегированные (tagged). Система сохраняет VLAN тег перед отправкой трафика с порта, который настроен как тегированный. Обычно такой порт подключен к порту другого коммутатора и использует VLAN тег для передачи VLAN информации.

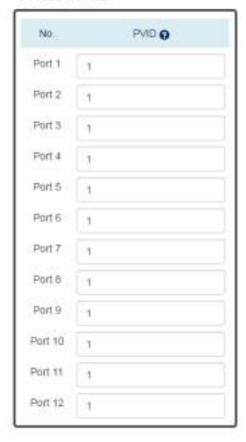
Нажмите, чтобы добавить новую VLAN

Нажмите, чтобы удалить существующую VLAN

8.15.3 Таблица VLAN

VLAN Table

VLAN ID – уникальный идентификатор VLAN.


VLAN Name – имя, присвоенное VLAN.

Untag Member – список нетегированных портов.


Tag Member – список тегированных портов.

8.15.4 Настройка VLAN PVID и Accept Type

Q VLAN PVID

Accept Type

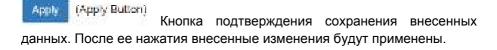
Арру

VLAN PVID

No — номер порта от 1 до N, где N — общее количество портов коммутатора.

<u>PVID</u> – назначьте VLAN ID для пакетов без VLAN тега, которые поступают на конкретный порт.

Accept Type


No – номер порта от 1 до N, где N – общее количество портов коммутатора.

<u>Filter</u> – три типа фильтра.

All – принимать все пакеты на выбранный порт, как тегированные, так и нетегированные;

Tagged Only – принимать только тегированные пакеты;

Untagged Only – принимать только нетегированные пакеты.

8.15.5 Настройка VLAN Q-in-Q

Specific Provider Ethertype

Глобальное значение конфигурации. Ethertype назначается для всех портов, которые настроены, как «Specific Provider». Это поле заблокировано до тех пор, пока хотя бы 1 порт не будет настроен, как «Specific Provider» в секции настроек Q-in-Q Port Settings.

Диапазон возможных значений от 0x0000 до 0xFFFF. Значение 0x8100 нельзя использовать. По умолчанию Ethertype равно 0x88A8.

Q Q-in-Q Port Settings

Q-in-Q Port Settings

No — Номер порта от 1 до N, где N — общее количество портов коммутатора.

Mode – настроить порт в один из режимов Q-in-Q.

	**
Режим Q-in-Q Tunnel	Нетегированные пакеты: TPID 0x88A8 помечать и отправлять фреймы Тегированные пакеты: 1. TPID 0x8100 помечать и отправлять фреймы 2. TPID 0x88A8 отправлять фреймы
Режим Customer	Порт настроенный как Customer используется обычно в 802.1Q VLAN

	Нетегированные пакеты:		
	TPID 0x8100		
	Тегированные пакеты:		
	1. TPID 0x8100		
	a. Одинаковые VLAN ID отправлять		
	фреймы		
	b. Разные VLAN ID отбрасывать все		
	фреймы		
	2. TPID 0x88A8 – отбрасывать все фреймы		
	Нетегированные пакеты:		
	TPID 0x88A8 помечать и отправлять пакеты		
	Тегированные пакеты:		
	1. TPID 0x8100 Отбрасывать все фреймы		
Режим Provider	2. TPID 0x88A8		
	а. Одинаковые VLAN ID отправлять		
	фреймы		
	b. Разные VLAN ID отбрасывать все		
	фреймы.		
	Пользователь может поменять Ethertype для		
	Provider		
	Нетегированные пакеты:		
	Определенные пользователем TPID фреймы		
	помечать и отправлять		
D	Тегированные пакеты		
Режим Specific	1. TPID 0x8100 Отбрасывать все фреймы		
Provider	2. TPID 0x88A8 Отбрасывать все фреймы		
	3. TPID (задано пользователем)		
	a. Одинаковые VLAN ID отправлять		
	фреймы		
	b. Разные VLAN ID отбрасывать все		
	фреймы.		

Apply (Apply Button)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.16 QoS (Quality of Service)

Quality of Service (QoS) технология предоставления различным классам сетевого трафика различных приоритетов обслуживания. Применение QoS обеспечивает стабильную и предсказуемую передачу данных в сети. Кроме того, использование QoS может оптимизировать пропускную способность сети, где она используется.

8.16.1 Настройка QoS

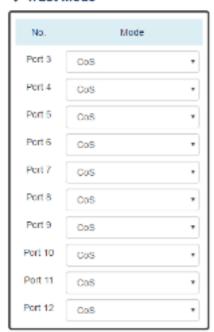
Queue Scheduling

<u>Scheduling Mode</u> Выберите метод разбивания трафика на очереди для QoS:

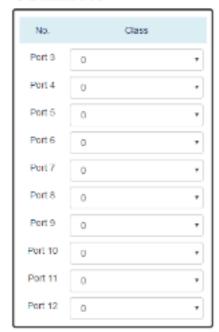
WRR – Weighted Round Robin. Метод при котором учитывается «вес» (low weight, high weight), а трафик разбивается на очереди;

Strict – Strict Priority Queue. Метод на основе приоритетности трафика от самого высокого до самого низкого.

Queue Weight


Queue – поддерживается 8 очередей для передачи трафика от 0 до 7.

<u>Weight</u> – задает определенный «вес» для порта. Диапазон возможных значений от 1 до 100. Вес для каждого номера очереди представлен в таблице ниже:



8.16.2 Настройка режима Trust для QoS и CoS по умолчанию

O Trust Mode

O Default CoS

Apply

Trust Mode

No — номер порта от 1 до N, где N — общее количество портов коммутатора.

Mode – выбор режима «доверия»

CoS – Class of Service. Использует 3 бита «PRI» в поле VLAN тега. Это позволяет классифицировать весь трафик на 8 различных классов от 0 до 7;

DSCP — использует 6 битов «DSCP» в поле ToS тега. Позволяет разделить весь сетевой трафик на 64 различных типа от 0 до 63.

Default CoS

No — номер порта от 1 до N, где N — общее количество портов коммутатора.

<u>Class</u> – пользователь может определить класс трафика для порта. Система будет автоматически ставить класс трафика в передаваемые фреймы в заголовок. По умолчанию класс каждого порта равен 0.

Артіу (Арру Button) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.16.3 Настройка CoS

CoS Mapping

Class / Priority

В поле CoS называемом «PRI» в теге VLAN содержится 3 бита с информацией о классе трафика от 0 до 7

Queue

Коммутатор поддерживает до 8 очередей сетевого трафика от 0 до 8. Трафик в очереди 8 имеет наименьший приоритет, а в очереди 7 наибольший. Настройка очередей по умолчанию дана в таблице ниже:

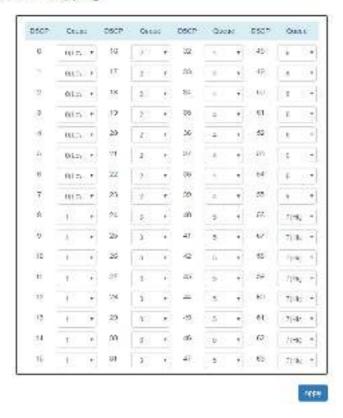
0

1

2

3

4


5

6

7

8.16.4 Настройка ToS (DSCP)

DSCP Mapping

DSCP

В поле ToS называемом «DSCP» в теге ToS содержится 6 битов с информацией о типе трафика от 0 до 63.

Queue

Коммутатор поддерживает до 8 очередей сетевого трафика от 0 до 8. Трафик в очереди 8 имеет наименьший приоритет, а в очереди 7 наибольший. Настройка очередей по умолчанию дана в таблице ниже:

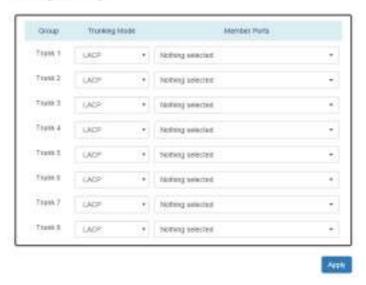
Type	0-7	8-15	16-23	24-31	32-39	40-47	48-55	56-63
Queue	0	1	2	3	4	5	6	7

Арру Button) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.17 Port Trunk (агрегация каналов)

Функция Port Trunk (создание транков портов), также известная как Link Aggregation (агрегация каналов) позволяет объединять группы линков в trunk'и.

Всего обеспечивается 8 групп Trunk ов. Это хороший способ распределить нагрузку в сети и создать запасные линки.


Например, когда порты с 1 по 4 объединены в trunk 1 и все порты поддерживают скорость 100Тх в полном дуплексе общая пропускная способность такого trunk'а будет равна 800Мбит/с.

Трафик, передающийся в trunk, распределяется по одному из каналов на основе МАС адреса источника для достижения баланса нагрузки.

Если режим создания trunk'а выставлен, как «LACP», и один из каналов внутри trunk'а вышел из строя, то весь трафик будет передан по другому каналу в таком trunk'е.

8.17.1 Настройка функции Port Trunk

Trunking Settings

Group – 8 групп trunk'ов.

Trunking Mode – 2 метода организации trunk'ов:

<u>Static</u> – трафик передается по одному из каналов в группе. Канал определяется МАС адресом в заголовке пакета. Если канал не исправен трафик не может быть передан остальными каналами в группе;

<u>LACP</u> – динамическая организация trunk'ов. Если текущий канал передачи данных не исправен трафик может быть передан по другому каналу в группе.

<u>Member Ports</u> – отметьте порты-участники trunk группы. Порт может принадлежать только одной из trunk групп.

Арту (Apply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.17.2 Статус функции Port Trunk

Trunking Status

Group – поддерживаемые trunk группы от Trunk 1 до Trunk 8

<u>Type</u> – метод организации trunk'oв. «-» отображается если не выбраны порты для организации trunk'oв.

Ports - порты- участники trunk группы

<u>Link Status</u> – поле отображает текущее состояние для конкретного порта. UP или Down.

8.18 Storm Control (Защита от широковещательного шторма)

Широковещательный шторм (Net Storm или Broadcast Storm) происходит, если в сети передается/принимается слишком много пакетов.

Функция Storm Control используется для предотвращения обрушивания сети multicast broadcast или другим видом трафика.

Когда функция Storm Control включена для определенного вида трафика, система будет осуществлять проверку входящего трафика. Если трафик отличается от настроенного, система будет отбрасывать пакеты для предотвращения возникновения шторма.

8.18.1 Настройка функции Storm Control

Storm Control

Appro

Traffic Type – выбор типа отслеживаемого трафика:

Broadcast, Multicast и Unknown Unicast.

Mode – вкл/выкл функцию Strom Control для конкретного типа трафика.

<u>Level</u> – три уровня скорости приема пакетов. Если принимается слишком много пакетов в сек выбранного типа трафика система начнет автоматически дропать их во избежание возникновения широковещательного шторма.

High (Высокий) - более чем 2500 пакетов / сек;

Middle (Средний) – более чем 1000 пакетов / сек;

Low (Низкий) – более чем 500 пакетов / сек.

Apply (Apply Button)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.19 Port-Based Network Control IEEE 802.1X (контроль доступа и аутентификации)

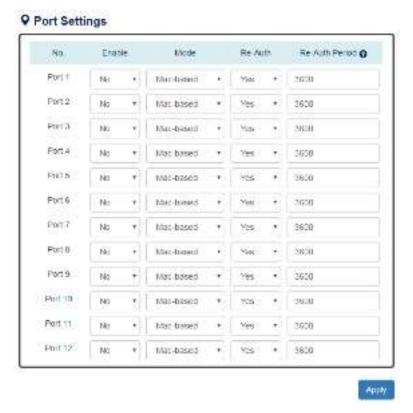
IEEE 802.1X это протокол контроля доступа и аутентификации, который ограничивает права неавторизованных компьютеров, подключенных к коммутатору. Протокол контроля Port-based является удобным средством обеспечения безопасности, так как аутентификация проходит только один раз для каждого порта, и нет необходимости в дальнейшем проходить ее снова, при смене подключенного устройства, например.

Управление доступом основанное на MAC адресе (MAC - based) это более безопасный, но менее удобный способ аутентификации. В сеть может получить доступ лишь то устройство, которое прошло проверку MAC адреса.

Оба метода являются необязательными к использованию и могут быть отключены совсем.

8.19.1 Базовая настройка 802.1Х

Basic Settings (базовые настройки)


802.1X Mode – вкл/выкл (enable/disable) функцию контроля доступа.

<u>Server Type</u> – выбор сервера для аутентификации согласно 802.1X. «Local Database» или «RADIUS Server»

Local Database – база данных хранящаяся на коммутаторе. Клиент при авторизации отправляет имя и пароль, которые сравниваются с теми, что хранятся в базе данных коммутатора.

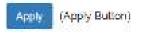
RADIUS Server – база данных, которая поддерживается на всех устройствах с протоколом RADIUS. Аутентификация выполняется по протоколу RADIUS и включает в себя шифрование.

8.19.2 Настройка 802.1Х для портов

Port Settings (Настройка портов)

No — номер порта от 1 до N, где N — общее количество портов коммутатора.

<u>Enable</u> – состояние функции контроля доступа 802.1X на выбранном порте. YES значит, что функция 802.1X активна и порт заблокирован, пока не будет выполнена аутентификация.


Mode – выбор метода аутентификации:

MAC-based – аутентификация на основе MAC адреса. Только устройство с известным MAC может быть подключено к сети;

Port-based – аутентификация на основе порта, любое устройство подключенное к порту может получить доступ к сети.

<u>Re-Auth</u> – вкл/выкл повторную аутентификацию на порте. Порт будет запрашивать повторную аутентификацию через время указанное в Re-Auth Period.

<u>Re-Auth Period</u> – Интервал времени, через который порт будет запрашивать повторную аутентификацию.

Кнопка подтверждения сохранения внесенных

данных. После ее нажатия внесенные изменения будут применены.

8.19.3 Настройка локальной базы данных

User Name

Имя пользователя, который будет проходить аутентификацию

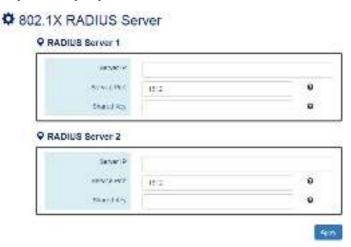
Максимальная длина 32 символа. Нельзя использовать символы #\""?

<u>Password</u>

Пароль, используется для аутентификации пользователя.

Максимальная длина 32 символа. Нельзя использовать символы #\"?

Confirm Password


Введите пароль еще раз в качестве подтверждения.

Арру Button) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.19.4 Настройка сервера RADIUS

Server IP – IP адрес сервера RADIUS

<u>Service Port</u> – сервисный порт, который будет прослушиваться на сервере RADIUS

<u>Shared Key</u> – ключ, используемый для подтверждения подключения между сервером и устройством, запрашивающим аутентификацию до процесса самой аутентификации.

Арру Button) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.20 Port Mirroring (Зеркалирование портов)

Зеркалирование портов (Port Mirroring) позволяет копировать входящие и исходящие пакеты с одного или нескольких портов на порт назначения. Это очень полезный инструмент мониторинга сетевого трафика, который поможет внимательно следить за сетью и отслеживать возникновение проблем.

8.20.1 Настройка функции Port Mirroring

<u>Mirroring Mode</u> – вкл/выкл (enable/disable) функции Port Mirroring. Если пользователь включил зеркалирование, система будет копировать сетевой трафик с порта-источника (Source port) на порт назначения (Destination Port) с использованием режима Sniffer Mode.

<u>Source Port</u> – порт или порты с которого/которых трафик будет копироваться на порт назначения (Destination port)

Sniffer Mode

Both Tx and Rx – режим копирования на порт назначения (Destination port) как принимаемых так и отправляемых пакетов;

<u>Tx Only</u> – режим копирования на порт назначения (Destination port) только принимаемых пакетов;

Rx Only – режим копирования на порт назначения (Destination port) только отправляемых пакетов.

<u>Destination Port</u> – порт назначения, на который копируется трафик с порта/портов источника (Source port) для дальнейшего анализа.

Арру Bulton) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.21 Ping (команда PING)

Ping это простой инструмент для проверки состояния подключения в IP сети. PING подразумевает отправку запроса согласно протоколу ICMP конечному устройству и ожидания ответного сообщения с целью проверки подключения.

8.21.1 Использование команды PING с IPv4/IPv6

Туре – выбор протокола IPv4 или Pv6

<u>IP Address</u> – IP адрес подключенного сетевого устройства. Формат адреса основан на выборе протокола в поле Туре.

<u>Count</u> – количество отправленных сообщений ICMP на заданный IP адрес. Диапазон возможных значений от 3 до 50. Значение по умолчанию 3.

<u>Result</u> – поле с результатами работы PING отображает ответы от удаленного IP устройства. Если удаленное устройство не отвечает на запросы будет отображено No Response (нет ответа).

«Start» Button – Нажмите кнопку, чтобы начать пинговать удаленный IP адрес.

«Stop» Button – Нажмите кнопку, чтобы закончить пинговать удаленный IP адрес.

«Clear» Button — Нажмите кнопку, чтобы очистить поле Result от информации.

<u>«Reset» Button</u> – Нажмите кнопку, чтобы сбросить ранее заданную информацию (IP Address, Count) и результаты в поле Result.

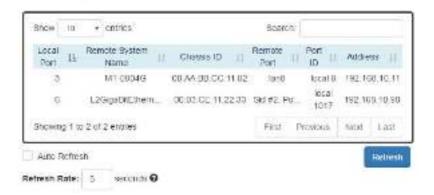
8.22 LLDP (функция оповещения «соседей»)

LLDP (IEEE 802.1AB) протокол канального уровня, позволяющий сетевому оборудованию оповещать оборудование, работающие в локальной сети о своем существовании и передавать ему свои характеристики, а также получать от него аналогичные сведения.

8.22.1 Настройка LLDP

LLDP Mode

Вкл/выкл функцию LLDP в коммутаторе.


LLDP Timer

Интервал отправки LLDP сообщений. Диапазон возможных значений от 5 до 32767 сек. Значение по умолчанию 30 сек.

Арту (Apply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.22.2 LLDP таблица «соседей»

LLDP Neighbor

Local Port

Порт, подключенный к LLDP «соседу» в коммутаторе

Remote System Name

Имя LLDP «соседа». Это имя настраивается на удаленном устройстве.

Chassis ID

Этот идентификатор определяет MAC адрес LLDP «соседа».

Remote Port

Поле отображает информацию о порте, полученную от LLDP «соседа»

Port ID

Port ID отображает идентификатор порта, подключенного LLDP «соседа».

<u>Address</u>

Поле отображает IP адрес LLDP «соседа».

8.23 System Warning (Системные оповещения)

Системные оповещения содержат следующие типы оповещений:

«System Event Log» (Журнал системных событий);

«SMTP Settings» (Настройки SMTP);

«Event Selection» (Выбор события).

Эти журналы со сведениями очень полезны для системного администратора, как средство отладки сети. Когда система была отключена, кто пытался выполнить вход в систему, когда система была перезапущена в нештатном режиме и тд. – все эти события попадают в журналы.

Пользователь может дополнительно настроить звуковое оповещение, используя выходы реле на коммутаторе.

8.23.1 Настройка системных оповещений

System Log Settings

Apply

System Log Mode

Выбор способа сохранения логов (записанных событий).

Local – в памяти коммутатора;

Remote - на удаленном сервере;

USB – на USB flash накопитель.

Remote Server IP Address

Поле содержит IP адрес удаленного сервера. Если выбран режим сохранения логов «Remote», пользователи могут использовать указанный IP адрес для получения системных логов.

Service Port

Порт, использующийся для прослушивания пакетов с логами от удаленного сервера.

Диапазон возможных значений выбора порта от 1 до 65535.

Значение порта по умолчанию – 514.

Арру Bulton)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.23.2 Журнал системных событий

Log Text Area

В это поле отображаются системные события, если в System Log Mode выбрано значение Local.

Clear Нажмите эту кнопку, чтобы очистить журнал системных событий.

Refresh
Нажмите эту кнопку чтобы обновить информацию в журнале системных событий.

8.23.3 Настройка SMTP Информации

SMTP Settings

Server Settings (Настройки сервера SMTP)

SMTP Status – вкл/выкл функцию SMTP.

<u>Server Address</u> – поле с IP адресом или URL ссылкой SMTP почтового сервера. Например, адрес SMTP сервера, предоставляемого Google – smtp.gmail.com

<u>Server Port</u> – поле содержащее номер порта, прослушивающего запросы от SMTP сервера. Для безопасности, рекомендуется использовать порты 465 для SSL и 587 для TLS.

Диапазон возможных значений от 1 до 65535. Значение по умолчанию – 25. Порт 25 – порт по умолчанию для e-mail сервера.

Sender E-mail – e-mail адрес отправителя.

Mail Subject - тема e-mail сообщения.

Нельзя использовать символы #\"?

<u>SMTP Authentication</u> – вкл/выкл выполнение аутентификации на SMTP сервере с использованием имени пользователя и пароля.

<u>User Name</u> – имя пользователя, используется для аутентификации на SMTP сервере. Максимальная длина 32 символа. Нельзя использовать символы #\'"?

<u>Password</u> – пароль, используется для аутентификации на SMTP сервере вместе с именем пользователя (User Name). Максимальная длина 32 символа. Нельзя использовать символы #\"?

Recipient Settings (Настройки получателей)

<u>E-mail Address</u> 1-4 – e-mail адреса получателей уведомлений. Поля доступны к заполнению, если SMTP отправка включена.

Арту (Apply Button)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.23.4 Настройка выбора событий

Event Selections

System Events

Event

Предусмотрено реагирование на 5 типов системных событий:

<u>Authentication Failure</u> – Ошибка логина при входе с WEB или через командную строку. Может быть вызвано вводом неправильного имени пользователя или пароля.

<u>ERPS Change</u> – защита от петель ERPS работает и топология изменилась.

<u>Power 1 or 2</u> – Один из источников питания отключился / вышел из строя.

<u>Cold Start</u> – система была перезагружена из за отключения питания.

<u>Warm Start</u> – система была перезагружена с помощью команды reboot через командную строку или с помощью кнопки reboot в WEB интерфейсе

<u>Digital Input</u> – уровень сигнала на пинах DI изменился с высокого на низкий или наоборот.

O Interface Events

Event	Faut Alarm	System Log	SMTP	SNMP Trap
All Ports Link	Down	Up Down	Up Down	Up Down
Port 1 Link	Down	Up Down	Up Down	Up Down
Port 2 Link	Down	Up Down	Up Down	Up Down
Port 3 Link	Down	Up Down	Up Down	Up Down
Port 4 Link	Down	Up Down	Up Down	Up Down
Port 5 Link	Down	Up Down	Up Down	Up Down
Port 6 Link	Down	Lip Down	Up Down	Up Down
Port 7 Link	Down	Up Down	Up Down	Up Down
Port 8 Link	Down	Up Down	Up Down	Up Down
Port 9 Link	Down	Up Down	Up Down	Up Down
Fort 18 Link	Down	Up Down	Up Down	Up Down
Port 11 Link	Down	Up Down	Up Down	Up Down
Port 12 Link	Down	Up Down	Up Down	Up Down

Apply

<u>Event</u> – отображают статус линка для каждого порта. Аварийный сигнал срабатывает только если линк пропал и в системных событиях поддерживается как установление соединения, так и ошибка установления соединения.

<u>Fault Alarm</u> – LED индикатор ошибки на коммутаторе загорится красным, и сработает реле, если настроенные события произошли. По умолчанию индикатор ошибки горит зеленым, а реле не срабатывает.

<u>System Log</u> – когда настроенные события произошли, они попадают в журнал системных событий на удаленном сервере, на USB накопителе и тд.

<u>SMTP</u> – если отправка логов по электронной почте (SMTP) активна, то когда настроенные события произошли, система отправит запись о них на указанные e-mail адреса (SMTP Settings).

SNMP Trap — если функция SNMP Trap включена, то, когда настроенные события произошли, система отправит информацию о них на IP адрес получателя сообщений SNMP Trap.

Арру Bulton) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.24 MAC Table (Таблица MAC адресов)

MAC адрес (Media Control Access address) – уникальный идентификатор, присваиваемый каждой единице активного сетевого оборудования в компьютерных сетях Ethernet.

Заполнение таблицы МАС адресов в коммутаторе необходимо для более эффективной передачи пакетов внутри сети. Когда коммутатор получает пакет, система проверяет таблицу МАС адресов и направляет пакет в соответствующий порт.

Таблица МАС адресов динамически наполняется МАС адресами. Когда система получает МАС адрес которого нет в таблице, она пересылает пакет на все порты LAN в той же VLAN. Когда устройство, которому предназначен пакет отвечает, система добавляет его МАС адрес в таблицу.

8.24.1 Настройка постоянных (static) MAC адресов

Static MAC Address Settings

<u>VID</u>

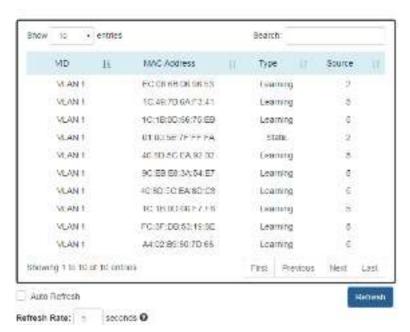
VID это ID группы VLAN, которая содержит заданный MAC адрес. Диапазон возможных значений от 1 до 4094.

MAC Address

Это поле содержит постоянный MAC адрес портов-участников VLAN группы.

Group Member

Участник группы — это порт принадлежащий VLAN группе, которому принадлежит настроенный постоянный МАС адрес.


Нажмите, чтобы добавить дополнительный постоянный МАС адрес

Нажмите, чтобы удалить привязку постоянного МАС адреса.

Арру Button) Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.24.2 Таблица МАС адресов

MAC Address Table

VID

VID это ID VLAN содержащей настроенный MAC адрес.

MAC Address

Этот столбец содержит список заданных МАС адресов.

<u>Type</u>

Отображает тип МАС адреса:

Learning – MAC адрес был получен от передаваемых пакетов;

<u>Static</u> – MAC адрес был вручную задан пользователем.

Source

Отображает порт, которому принадлежит МАС адрес.

8.25 Authorization (Вход в систему управления коммутатором)

Имя пользователя (username) и пароль (password) играют ключевую роль при управлении коммутатором через WEB интерфейс или командную строку. Пользователи обязаны выполнить вход в систему, прежде чем вносить какие-либо изменения в конфигурацию коммутатора. Настоятельно рекомендуется изменить хотя бы пароль для доступа к коммутатору в рамках безопасности.

8.25.1 Настройка информации для входа в систему

Update Authorization

Apply

Username (имя пользователя)

Необходимо для входа в систему.

Максимальная длина 20 символов. Можно использовать только латинские символы обоих регистров(A-Z, a-z) и числа от 0-9. Имя пользователя по умолчанию **admin**

Password (пароль)

Пароль необходим для входа в систему.

Максимальная длина 20 символов. Можно использовать только латинские символы обоих регистров(A-Z, a-z) и числа от 0 – 9. Пароль пользователя по умолчанию **admin**

Confirm Password (пароль подтверждение)

Необходимо ввести Password еще раз в этом поле для подтверждения.

(Apply Bulton)
Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

8.26 Firmware Upgrade (Обновление прошивки)

Для стабильной работы и наилучшей совместимости с промышленными приложениями рекомендуется обновлять систему до новейшей прошивки, представленной на нашем сайте.

Предусмотрено 2 способа выполнения процедуры обновления прошивки из WEB интерфейса:

- 1) С помощью USB накопителя, сохранив на нем файл с прошивкой;
- 2) С помощью ПК, сохранив на жестком диске ПК файл с прошивкой.

8.26.1 Загрузка файла с прошивкой

Firmware Image

Нажмите «+Selected File» чтобы выбрать образ с прошивкой.

Версия прошивки отображается в системе и основана на имени файла с прошивкой. Пользователь может добавить номер прошивки к имени файла с прошивкой. Например, XXX-v1.2.3, где XXX — оригинальное имя файла с прошивкой.

Selected File

После выбора файла с прошивкой его имя отобразится в этом поле.

Upload После выбора прошивки на ПК, нажмите эту кнопку, чтобы загрузить прошивку в коммутатор.

8.26.2 Процесс загрузки файла с прошивкой в коммутатор

Следующие шаги выполняются, когда система приступила к обновлению прошивки:

1. Процесс загрузки образа с прошивкой. Прогресс будет отображен шкалой заполнения (в %);

 Проверка загруженного файла. Когда процесс загрузки образа с прошивкой завершен на 100%, система приступит к проверке загруженного файла, чтобы убедится, что он подходит. По умолчанию образ прошивки зашифрован.

 Установка загруженного файла с прошивкой. Новая прошивка будет установлена на коммутатор после окончания процесса проверки.

4. Перезагрузка системы. Система будет перезагружена автоматически, если процесс обновления прошивки прошел без ошибок.

Device Rebooting... Please Wait...

The Web Page Will Refresh Automatically.

8.26.3 Копирование файла с прошивкой с USB накопителя

1. Копирование файла с прошивкой с USB накопителя в коммутатор. Система проверяет, вставлен ли USB накопитель, а также наличие файла на нем.

2. Процесс проверки загруженного файла. После копирования файла прошивки на коммутатор, система выполняет его проверку на совместимость. По умолчанию файл прошивки шифруется.

 Процесс установки загруженного файла с прошивкой. Новая прошивка будет установлена на коммутатор после окончания процесса проверки.

 Перезагрузка системы. Система будет перезагружена автоматически, если процесс обновления прошивки прошел без ошибок.

Device Rebooting... Please Wait...

The Web Page Will Refresh Automatically.

8.27 Config Backup (Создание резервной копии настроек)

Зачастую, в сети работает несколько одинаковых коммутаторов и чтобы настроить их на одни и те же функции, пользователю достаточно настроить только один из коммутаторов, и, сохранив настройки в файл, перенести их на остальные.

Файл с текущими настройками может быть сохранен, как на ПК так и на USB накопитель.

8.27.1 Сохранение резервного файла с настройками

Backup to Localhost (Создание резервной копии настроек на ПК)

<u>File Name</u> – укажите имя файла для сохраняемой резервной копии с настройками, который будет загружен на ПК.

<u>Backup to USB</u> (Создание резервной копии настроек на Flash накопителе)

<u>Backup Running Config File</u> – укажите имя файла для сохраняемой резервной копии с текущими настройками, который будет загружен на USB Flash накопитель

<u>Backup Start Config File</u> – укажите имя файла для сохраняемой резервной копии со стартовыми настройками, который будет загружен на USB Flash накопитель.

Нажмите эту кнопку, чтобы выполнить процесс загрузки файла с настройками на ПК или USB накопитель

Примечание!

Если поле имени файла оставить пустым система создаст файл с именем по умолчанию config-[datatime].cfg

8.28 Config Restore (Восстановление настроек из файла)

Пользователю рекомендуется сохранять файл с конфигурацией после серии настроек коммутатора. Если на другом коммутаторе потребуются аналогичные настройки, пользователь может восстановить их из файла.

8.28.1 Восстановление настроек из файла

Restore from Localhost (Восстановление настроек из файла с ПК)

File Name – Выберите ранее сохраненный файл с настройками на ПК.

Restore from USB (Восстановление настроек из файла с USB Flash накопителя)

<u>File Name in USB</u> – укажите имя файла с настройками, сохраненного на USB Flash накопителе. Если файл находится в папке, укажите полный путь.

Hажмите эту кнопку, чтобы восстановить настройки коммутатора из файла с ПК или USB Flash накопителя.

8.29 USB Auto-Load & Auto – Backup (Функция автоматического сохранения/загрузки настроек)

USB Auto-Load & Auto-Backup

ADDN

<u>USB Auto-Load</u> – вкл/выкл (enable/disable) функции автоматической загрузки настроек. Если функция включена, то система будет искать файл со стартовой конфигурацией (startuo-config) на USB Flash накопителе и загружать его при перезагрузке.

<u>USB Auto-Backup</u> – вкл/выкл (enable/disable) функции автоматического сохранения настроек. Если данная функция включена, то система будет сохранять файл с текущими настройками (running config) на USB Flash накопителе при каждом изменении конфигурации коммутатора.

Apply (Apply Bulton)

Кнопка подтверждения сохранения внесенных данных. После ее нажатия внесенные изменения будут применены.

Внимание!

- ✓ Категорически запрещается касаться элементов блока питания, находящихся под высоким напряжением.
- ✓ Для защиты оборудования от грозовых разрядов необходимо устанавливать устройства грозозащиты!
- ✓ Качественное заземление является обязательным условием подключения.
- ✓ Хранение и транспортировка уличных коммутаторов с резервной системой питания производится с демонтированной плавкой вставкой – предохранителем для ограничения разряда системы АКБ. Запрещается подключать глубоко разряженные АКБ.
- ✓ Для исключения ложных срабатываний автоматов защиты необходимо выбирать автоматы «С» с током срабатывания >4А.
- ✓ Неиспользуемые гермовводы следует закрыть заглушками. В противном случае, система обогрева может работать в неправильном режиме, также возможно образование конденсата. Это может привести к выходу уличного коммутатора из строя!

9. Технические характеристики*

Модель	SW-80802/WLU
Общее кол-во портов	10
Кол-во портов FE+PoE	-
Кол-во портов FE	-
Кол-во портов GE+PoE	8
Кол-во портов GE (не Combo порты)	-
Кол-во портов Combo GE (RJ45+SFP)	-
Кол-во портов SFP (не Combo порты)	2
Встроенные оптические порты	-
Мощность РоЕ на один порт (макс.).	30 Вт
Суммарная мощность РоЕ всех портов (макс.).	240 Вт

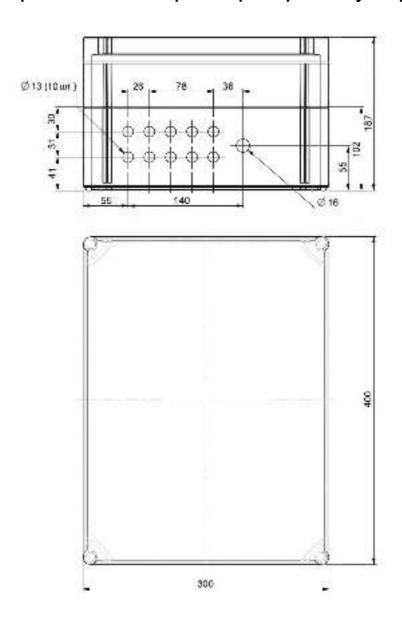
Стандарты РоЕ	IEEE 802.3af/at	
Метод подачи РоЕ	Метод А 1/2(+), 3/6(-)	
Топологии подключения	звезда каскад кольцо	
Буфер пакетов	12 МБ	
Таблицы МАС-адресов	16 K	
Пропускная способность коммутационной матрицы (Switching fabric)	20 Гбит/с	
Скорость обслуживания пакетов (Forwarding rate)	1000Mbps port – 1,488,000 пакетов/с 100Mbps port - 148,800 пакетов/с 10Mbps port - 14,880 пакетов/с	
Поддержка jumbo frame	9,6 КБ	
Стандарты и протоколы	 IEEE 802.3 – 10BaseT IEEE 802.3u – 100BaseTX IEEE 802.3ab – 1000BaseT IEEE 802.3z 1000 BaseSX/LX IEEE 802.3af Power over Ethernet (PoE) IEEE 802.3at Power over Ethernet (PoE+) IEEE 802.3x – Flow Control IEEE 802.1Q – VLAN IEEE 802.1D – Class of Service IEEE 802.1D – Spanning Tree IEEE 802.1w – Rapid Spanning Tree IEEE 802.1s – Multiple Spanning Tree IEEE 802.3ad – Link Aggregation Control Protocol (LACP) IEEE 802.1AB – LLDP (Link Layer Discovery Protocol) IEEE 802.1X – Access Control ITU-T G.8032/Y.1344-Ethernet Ring ProtectionSwitching (ERPS) 	
Функции уровня 2	• IEEE 802.1D (STP) • IEEE 802.1w (RSTP) • IEEE 802.1s (MSTP)	

	• VLAN
	VLAN Group 4K Tagged Based
	Tagged Based Dort based
	Port-based Voice VLAN
	Link Aggregation IEEE 802.3ad with LACP LICAR Spanning
	• IGMP Snooping
	IGMP Snooping v1/v2/v3 Supports 1023 IGMP groups
	groups • IGMP Static Multicast Addresses
	Querier, Immediate Leave
	• Storm Control
	G.8032-Ethernet Ring Protection Switching
	(ERPS)
	•CoS
QoS	• DSCP
	WRR/SPQ Queuing
	Management System User Name/Password
	Protection
	■IEEE 802.1x Port-based Access Control
Безопасность	 RADIUS (Authentication, Authorization,
	Accounting)
	•HTTP & SSL (Secure Web)
	SSH v2.0 (Secured Telnet Session)
	Web management – управление через Web-
Управления	интерфейс • CLI
Управление	• Telnet
	• SNMP
	•PWR1,
	•PWR2,
	• Fault,
	• Ring Master,
Индикаторы	• Ring State;
	• Link/наивысшая скорость(зел.),
	• низкая скорость (жёлт.)
	 РоЕ: индикация подключения РоЕ устройств
Реле аварийной	DC24V,1A(HO, H3)
сигнализации	DO24V, IA(IIO, IIO)
Встроенная грозозащита	-

Питание	AC100-240V(1.5A)		
Резервное питание	DC 48V		
	(набор свинцово-кислотных АКБ12V, 2Ah x 4шт.)		
Система	Конвекционная (без вентилятора),		
термостабилизации	с нагревательным элементом, мощность 75 Вт.		
Максимальная	325 Вт		
потребляемая мощность			
Класс защиты	IP66		
Размеры (ШхВхГ) (мм)	300x400x187		
Cassag Manager	Монтаж на стену,		
Способ монтажа	на столб (крепление приобретается отдельно).		
Рабочая температура	-50+50°C		
Относительная	0-95% без конденсата		
влажность			
Дополнительно	-		

^{*} Производитель имеет право изменять технические характеристики изделия и комплектацию без предварительного уведомления.

10. Гарантия


Гарантия на все оборудование OSNOVO – 60 месяцев с даты продажи, за исключением аккумуляторных батарей, гарантийный срок - 12 месяцев.

В течение гарантийного срока выполняется бесплатный ремонт, включая запчасти, или замена изделий при невозможности их ремонта.

Подробная информация об условиях гарантийного обслуживания находится на сайте www.osnovo.ru

Составил: Лебедев М.В.

11. Приложение А «Габаритные размеры коммутатора»

^{*} Все размеры даны в мм

12. Приложение Б «Крепления на стену / на опору»

Для монтажа уличных коммутаторов на стенах, опорах, подвесах и т.д. применяются настенные крепления (приобретаются отдельно).

Рис. 1 Крепления на стену / опору, общий вид

Для монтажа уличного коммутатора на стену или опору:

- 1. Распаковать крепления.
- 2. Расположить корпус на твердой ровной поверхности, приложить планки креплений к задней стенке корпуса так, чтобы сквозные крепежные отверстия корпуса совпадали с отверстиями, просверленными для этой цели в планках.
- 3. Прикрепить планки к корпусу коммутатора, используя болты шайбы и гайки (имеются в комплекте).

Рис. 2 Крепления на стену / опору на корпусе коммутатора

- 4. Планки обеспечивают возможность крепления коммутатора на стену и другие плоские поверхности. Для крепления на столб присоединить к планкам крепежные зубчатые элементы треугольной формы (крепежные элементы вдвигаются внутрь планок).
- 5. Отрезав кусок перфорированной металлической ленты (имеется в комплекте), используя ленту, укрепить корпус коммутатора на столбе или опоре, затянуть винтам.

13. Приложение В. Набор команд для управления коммутатором через CLI

SYSTEM GROUP

Command	Explanation	Mode
erase startup-config	Reset to factory default and reboot	Configure
exec-timeout [MINUTF] [SECOND]	Set idle timeout [MINUTF] (SECOND)	Configure
hostname [DOSTNAML]	Set Switch Host Name	Configure
reboot	Reboot the switch	Configure
system contact [CONTACT]	Set system contact	Configure
system location [LOCATION]	Set device location	Configure
usemame [USER_ID] [PASSWORD]	Configure username and password	Configure
show exec-timeout	Display idle timeout	Configure
show hostname	Display Switch Host Name	Configure
show environment power [1 2]	Display power 1/2 status	Configure
show event status relay	Display relay status	Configure
show system contact	Display system contact	Configure
show system description	Display system description	Configure
show system location	Display system location	Configure
show system mac	Display system MAC address	Configure
strow system uptime	Display system uptime	Configure
show system version firmware	Display system version	Configure
show username	Display admin ID	Configure
no exec timeout	Default idle timeout	Configure
no hosiname	Default Switch Host Name	Configure
no system contact	Clear system contact	Configure
no system location	Clear device location	Configure
no usemame	Default username and password	Contigue

IPv4 GROUP

Command	Explanation	Mode
ipladdress (IP_ADDR) (MASK)	Set IPv4 address and nothask	Contigue
ip detault-galoway [DLFAULT_GATLWAY_ADDR]	Set default gateway address	Configure
ip name server (NAME_SERVER_IF)	Set Domain Name-Server	Configure
ip ping (PV4_ADDR) [4size PK/5_StZ> 4repeat PKG_CNT>]	Issue and Dv4 ping command.	Configure

show ip address	Display Host address of IPv4	Configure
show ip default-gateway	Display detault gateway address	Configure
show ip mode	Display IP mode (Static or Dynamic)	Configure
show to name-server	Display Domain Name-Server	Configure
no ip address	Delete IPv1 address	Configure
no ip detault-galeway	Clear the default gateway address	Configure
no ip name server	Clear the domain name server	Configure

IPv6 GROUP

Command	Explanation	Mode
ipv6 address add [IPV6_ADDR≪PREFIX_LEN∞]	Add an address and netmask of IPv6	Configure
ipvti enable	Enable IPv6 protocol	Configure
ipv6 neighbor flush	Issue a neighbor flush command of IPv8	Configure
ipv6 ping [IPV6_ADDR] [<size pkc_siz=""> <repact PKG_CNT>]</repact </size>	Issue an IPv6 ping command	Configure
show lov6	Displey IPv6 protocol state	Configure
show ipv6 address	Display IPv8 addresses	Configure
show ipv6 default address	Display default IPv6 address	Configure
show ipv6 neighbor	Display neighbor cache of IPv6	Configure
na ipvč	Disable IPv6 protocol	Configure
no ipv6 address add [IPV8_ADDR/PREFIX_LEN]	Delete IPv6 address	Configure

TIME GROUP

Command	Explanation	Mode
clock time (hhmmiss) (day) (month) (year)	Configure time	Configure
clock timezone [AREA] [CITY]	Configure time zone	Configure
ntp client sync [minute hour day month year]. NUMBER	Configure NTP client sync.	Configure
ntp client timeserver [SERVER_IP/URL]	Configure NTP client time server	Configure
ntp time update	Configure NTP time update	Configure
show clock time	Show time	Configure
show clock timezone	Show timezone	Configure
show ritp client sync	Show sync time	Configure
showintpiclient timeserver	Show NTP server configuration	Configure
no clock timezone	Remove timozone	Configure
no rrip client sync	Remove NTP sync time	Configure
no ritp client timeserver	Remove NTP time server configuration	Configure

STP GROUP

Command	Explanation	Mode
spanning-tree forward-time [4-30]	Set STP forward time	Configure
spanning free hello time [1-10]	Set STP hello time	Configure
spanning-tree max-age [9-40]	Set max age	Configure
spanning-tree mode [rstp]	Set STP mode as [RSTP]	Configure
spanning tree priority [0.61440]	Set STP priority	Configure
spanning-free cost [0-200000000]	Configure STP cost	Interface
spanning-free odge [admin-edge]admin-non-edge]	Configure STP edge	Intertace
spanning-tree link-type [point-to-multiple[point-to-point]	Configure STP link type on port	Intertace
spanning-tree port-priority [0-240]	Configure STP port priority	Intertace
spenning-tree stp disable	Disable Spanning Tree Protocol (STP) on part	Interface
show spanning tree forward time	Show STP forward time	Configure
show spanning-tree hallo-time	Show STP hallo time	Configure
show spanning tree max age	Show STP max age	Configure
show spanning-tree mode	Show Spanning Tree mode (RSTP or disable)	Configure
show spanning tree priority	Show STP priority	Configure
show spanning-tree rstp-status	Show Spanning Tree rstp status	Configure
show spanning-tree cost.	Show STP cost	Interface
show spanning tree edge	Show STP auto edge	Intertuce
show spanning tree link type	Show STP tink type	Intertace
show spanning-tree port-priority	Show STP port priority	Interface
show spanning tree stp	Show STP activated status on port	Intertace
no spanning-tree forward-time	Remove STP forwardtime configuration	Configure
no spanning tree hello time	Remove STP hello time configuration	Configure
no spanning-tree max-age	Remove STP max age configuration	Configure
no spanning tree mode	Disable STP configuration	Contigure
no spanning-tree priority	Remove STP priority configuration	Configure
no spanning tree cost	Remove STP cost configuration	Intertace
no spanning-tree edge	Remove auto edge configuration	Interfece
no spanning tree link type	Remove link type configuration	Intertace
no spanning-tree port-priority	Remove STP port priority configuration	Interfece
no spanning-tree stp	Lnable STP on port	Interface

SNMP GROUP

Command	Explanation	Mode
snmp server community to [COMMUNITY]	Set v1, v2c snmp server read-only community	Configure
samp server community by [COMMUNITY]	Set v1, v2c snmp server read-write community	Configure
sning server enable	Enable snmp server	Configure
snmp server enable v1-v2c-only	Enable samp v1 and v2c	Configure
snmp server enabley3-only	Enable snmp v3 command only	Configure
smmp server v3 auth admin [md5] sha] [PASSWORD]	Set SNMPv3 admin authentication type	Configure
enmp server v3 auth user [md5] sha] [PASSWORD]	Set SNMPv3 user authentication type	Configure
snmp server v3 encryption admin [des] aes] [PASSWORD]	Set SNMPv3 admin encryption type	Configure
simp server v3 encryption user [des] aes] [PASSWORD]	Set SNMPv3 user encryption type	Configure
snmp server v3 level admin [auth] noauth[priv]	Set SNMPv3 admin security level	Configure
snmp server v3 level user [auth] nosuth[priv]	Set SNMPv3 user security level	Configure
snmp trap community [COMMUNITY]	Set v1, v2c snmp trap community	Configure
simp trap host [TRAP_HOST_IP]	Set snmp trap host IP address	Configure
snmp trep inform retry [1-100]	Set snmp inform retry times	Configure
snmp trap inform timeout [1-300]	Set samp inform timeout	Configure
snmp trap v3 auth [sha] md5[[PASSWORD]	Set SNMPv3 authoritication type: mdb or sha	Configure
snmp trap v3 encryption (des ses) [PASSWORD]	Set SNMPv3 encryption type: des or aes	Configure
snmp trep v3 engine-ID [ENGINE_ID]	Set snmp trop engine ID	Configure
[virg thueon thue] level Cy quit grant	Set SNMPv3 trap security level	Configure
snmp trap v3 user [USER_ID]	Set SNMPv3 trap user	Configure
snmp trap version [1] 2c trap[2c inform[3 trap[3	Set snmp trap version and type	Configure
inform]		
show snmp server	Display snmp server status	Configure
show snmp server community ro	Display samp server read only community	Configure
show samp server community aw	Display samp server writable community	Configure
show snmp server v3 auth admin	Display SNMPv3 admin authentication type and passphrase	Configure
show samp server v3 outh user	Display SNMPv3 user authentication type and passphrase	Configure
show samp server v3 encryption admin	Display SNMPv3 admin encryption type and pessphrase	Configure
show snmp server v3 encryption user	Display SNMPv3 user encryption type and passphrase	Configure
show snmp server v3 level admin	Display SNMPv3 admin security level	Configure
show snmp server v3 level user	Display SNMPv3 user security level	Configure
show sning trap community	Display samp trap community	Configure
show snmp trap host	Display snmp trap host	Configure

show samp trap inform retry	Display snmp inform retry times	Configure
show samp trap inform timeout	Display snmp inform timeout	Configure
show snmp trap v3 auth	Display SNMFv3 authentication type and passphrase	Configure
show samp trap v3 encryption	Display SNMPv3 encryption type and passphrase	Configure
show somp trap v3 engine-ID	Display some trap engine ID	Configure
show samp trop v3 level	Display SNMPv3 trap security level	Configure
show samp trep v3 user	Display SNMFv3 trap user	Configure
show samp trap version	Display snmp trap version and type	Configure
no snmp server	Disable snmp server	Configure
no snmp server community ro	Detault ro-community name	Configure
no snmp server community rw	Default rw-community name	Configure
no samp server v3 outh admin	Default SNMPv3 admin authentication type	Configure
no snmp server v3 auth user	Detault SNMPv3 user authentication type	Configure
no snmp server v3 encryption admin	Default SNMPv3 admin encryption type	Configure
no snmp server v3 encryption user	Default SNMPv3 user encryption type	Configure
no samp server v3 level admin	Default SNMPv3 admin security level	Configure
no sninp server v3 level user	Default SNMPv3 user security level	Configure
no snmp hap community	Default samp trap community	Configure
no snmp trap host	Detault snmp trap host	Configure
no snmp trap inform retry	Detault snmp inform retry times	Configure
no samp trap inform timeout	Default samp inform timeout	Configure
no snmp trap v3 auth	Default SNMPv3 authentication type and possphrose	Configure
no snmp trap v3 encryption	Default SNMPv3 encryption type and passphrase	Configure
no snmp trap v3 engine-ID	Default snmp trap engine ID	Configure
no samp trap v3 level	Default SNMPv3 trap security level	Configure
no samp tmp v3 user	Default SNMPv3 trap user	Configure
no samp trap version	Default samp trap version	Configure

DHCP GROUP

Command	Explanation	Mode
boot hirst dhep	Directs the system to get on IP address	Enrique
dhop relay information option	Set DHCP relay option	Configure
dhcp relay server [server_number: 1.4] [server_IP].	Set DHCP relay servet [1 4] IP	Contigue
dhop relay untrust	Set BHCP-relay untrusted port	Interface

dhop server binding [bind_ID. 1 32] [MAC] [IP_TO_BIND]	Set binding IP and MAC of DHCP	Configure
dhop server default-gateway [IP_ADDR]	Set default-gateway IP for DHCP client	Configure
dhcp server included address [START_OF_IP] [END_OF_IP]	Set IP range for its client	Configure
dhop server lease [60:2592000]	Set DHCP server lease time	Configure
dhop server name-server [IP_ADDR]	Set name-server address for DHCP client	Configure
dtrcp service relay enable	Enable DHCP relay	Configure
dhip service server enable	Enable DHCP server	Configure
show boot host dhep	Display DHCP client state	Configure
show dhep relay information option	Display DHCP relay option	Configure
show dhop relay server [server_number, 1.4]	Display DHCP relay address	Configure
show dhep relay untrust	Display DHCP untrusted port status	Interface
show thep server binding	Display all DHCP bounding entries	Configure
show dhop server default-gateway	Display DHCP default-gateway IP	Configure
show dhop server included address	Display DHCP included IP range	Configure
show dhop server lease	Display DHCP server lease time	Configure
show dhop server name server	Display DHCP name server	Configure
show dhop server status	Display DHCP server status	Configure
show dhop service relay	Display DHCP relay agent status	Configure
show dhop service server	Display DHCP server status	Configure
no boot host dhop	Disable DHCP client	Configure
no dhop relay information option	Disable DHCP relay option	Configure
no dhop relay server [server_number: 1-4]	Remove DLICP relay server [1-4] IP	Configure
no dhep relay untrust	Default port as trusted	Interface
no dhep server binding [bind_ID: 1-32]	Remove DLICP bounding IP and MAC	Configure
no dhep server default-galoway	Remove DLICP default-galoway IP	Configure
no dhep server included-address	Remove DHCP included IP renge	Configure
no dhep server lease	Remove DLICP lease time	Configure
no dhep server nome-server	Remove DHCP name-server	Configure
no dhep service relay	Disable DTCP relay	Configure
no dhop service server	Disable DHCP server	Configure

UPNP GROUP

Command	Explanation	Mode
upno advertisement interval (300-86400)	Set UPnP advertisement interval	Configura
upmp emable	Enable Universal Plug and Play (UPnP)	Configure
show upnp	Display Universal Plug and Play (UPhP) state	Configure
show upop advertisement interval	Display UPnP advertisement interval	Contigues
пе цопр	Disable Universal Flug and Play (UPnP)	Contigue
no uprip advertisement interval	Default UPnP advertisoment interval	Configure

PORT GROUP

Command	Explanation	Mode
flowcontrol [on aff]	Configure port's flow-control to response a pause frame	Interface
name [PORT_NAME]	Set interface name	Interface
shuldown	Disable port	Intertace
speed_duplex [10 100] [full half]	Configure port's speed and duplex	Intertace
show interface all link summary	To display interface link status globally	Configure
show administrate	Lo display port's admin state	Interface
show flowcontrol	Display port's flow-control state	Interface
show link duplex	To display port's duplex	Interface
show link ox	To display port's Rx_Bytes	Interface
show link speed	To display part's speed	Interface
show link state	To display port's link state	Interface
show link summary	To display port's link summary	Intertace
show link tx	To display porf's Tx_Bytes	Intertace
show name	Lo display port's name	Interface
show speed_duplex	To display port's speed and duplex	Interface
show transceiver	Transceiver information	Interface
no flowcentrol	Default flow control as Auto mode	Interface
no name	Remove port's name	Interface
no shutdown	Enable port	Interface
no speed_duplex	Default port speed duplex as Auto mode	Intertace

PoE Group

Command	Explanation	Mode
power inline never	Disable PoF on port	Intertuce
keepalive enable	Enable PoE keepalive	Intertuce
keepalive hold-time	Configure PoE keepalive power cycle hold-time	Interface
keepalive to	Configure IP for PoE keepalive	Interface
keepalive time	Configure PoE keepslive cycle time	Intertace
schedule enable	Enable one port PoE schedule	Intertace
schedule [Sunday-Saturday] open-time [time]	Configure FoE schedule open time on one day	Interface
show power infine status	Display All PoE ports status	Configure
show keepalive table	Display All PoE keepalive info	Configure
show power inline status	Display PoE status	Interface
show keepalive	Show PoE keepalive status	Interface
show keepalive hold-time	Show PoE keepalive hold-time	Interface
show keepalive ip	Show IP for PoL Reepairve	Interface
show keepalive time	Show PoF keepaliye cycle time	Interface
show schedule	Disable Universal Plug and Play (UPnP)	Interface

show schedule (Sunday Saturday) open time	Show open time of POE schedule on one day	Interface
show schedule table	Show one port PoE schedule table	Interface
no power inline never	Enable PoE on port	Interface
no keepalive	Disable PoE keepalive	Intertace
no keepalive hold-time	Default PoE keepslive power cycle hold-time	Interface
no keepalive ip	Remove IP for PoE keepalive	Intertace
no koepalive time	Remove PoL keepalivo cycle time	Interface
na schedule	Remove one part PoE schedule	
no schedule [Sunday-Saturday] open-time	Remove PoL schedule on one day	

IGMP SNOOPING GROUP

Command	Explanation	Mode
igmp snooping enable	To enable IGMP snooping	Configure
igmp snooping test-member count [2-10]	To set IGMP last-member-count	Configure
igmp snooping last member interval [1 25]	To set IGMP last member interval	Configure
eldane reineup gridoons gragi	To enable IGMP snooping querier	Configure
igmp snooping query interval [1-3600]	To set IGMP query interval	Configure
igmp snooping query max-respond-time [1-12]	To set IGMP max-query-respond time	Configure
show igmp snooping all	To display ICMP settings (summary)	Configure
show igmp sneeping mdb	To display IGMP multicast database	Configure
no igmp sneoping	To disable ICMP snooping	Configure
no igmp snooping last-member count	To default ISMP Last-Member-Count	Configure
no igmp snooping last member interval	To default ICMP Last Member Interval	Configure
no igmp snooping querier	To disable IGMP querier	Configure
no igmp snooping query interval	To default IGMP query interval	Configure
no igmp snooping query max respond time	To default IGMP max respond time	Configure

VLAN GROUP

Commend	Explanation	Mode
management-ylan (VLAN IID 1-4004)	Configure management ylan ID	Configure
provider ethertype [VALUE_IN_HEX (i.e., 0x8848)]	Setup EtherType in 5 TAG for provider port	Contigue
member (untag PORT_LIST) [tog PORT_LIST]	Set VI AN member	VLAN.
name (VLAN_NAME)	Set VLAN Name	VLAN
[heggethur hooset] [hegget] [heggethur hooghties	Set VI AN acceptance of frame	Inferiora
switchport mode [d)dor (q-trinnel)) c(customer)) p(provider)) s(specific-provider)]	Configure port type as dotto-turnel, Customer, or Service Provider	hteriore

switchport pvid [PVID: 1 4094]	Set port VLAN ld	Intertace
show management-visn	Display management vian ID	Configure
show provider ethertype	Display Service Provider EtherType	Configure
show vian global	Display VLAN Global information	Configure
show member	Display port VLAN member	VLAN
show name	Displaty VLAN name	VLAN
show switchport accept	Display acceptance of VLAN frame	Interloce
show switchport mode	Display VI AN interface port type	Interlocu
show switchport pvid	Display port VLAN-Id	Interface
no manegement vlen	Set management vian to default	Configure
no provider ethertype	Default PtherType as 0x88A8 in S-TAC for provider port	Configure
no member	Default VLAN member	VLAN
no name	Default VLAN name	VLAN
no switchport accept	Default acceptance of VLAN frame	Interface
no switchport mode	Default port type as Customer	Interface
no switchport pvid	Default port VLAN-Id	Interface

QoS GROUP

Command	Explanation	Mode
gos fair-queue weight [W0] [W1] [W2] [W3] [W4] [W5] [W6] [W7]	Set WRR Queue Weight	Configure
qus map cos [priority.0-7] to tx-queue [0-7]	Set Cos queue mapping of priority [0-7]	Configure
gos map dscp [0-63] to be-queue [0-7]	Set DSCP mapping queue	Configure
qus queue-schedule [stnet wrr]	Set GoS scheduling type	Configure
gos default cos [0-7]	Set Default Class of Service (COS) value	Interface
gas trust [cos dscp]	Set trust of cos or dscp	Interface
show gos fair queue weight	Display WRR Queue Weight	Configure
show gas map cas	Display global QoS queue mapping status	Configure
show gos map cos [0.7]	Display GoS queue mapping status of Priority [0.7]	Configure
show gos map dscp	Display global DSCP queue mapping status	Configure
show gos map dscp [0-63]	Display DSCP queue mapping status of class [0-63]	Configure
show gos queue schedule	Display queue scheduling type	Configure
show gos default cos	Display CoS default value	Intertace
show gos trust	Display GoS trust	Interface
no gos fair queue weight	Default WRR Queue Weight	Configure
no gos map cos (0-7)	Reset Cos queue mapping of priority (0-/)	Configure
no gos map dsep [0-80]	Reset DSCP mapping quoue to default.	Configure
no gos queue-schedule	Default scheduling type as WRR	Configure
no gos default cos	Reset default CoS to initial value	Interface
no gos trust	Default trust as CoS	Interface

PORT TRUNK GROUP

Command	Explanation	Mode
trunk group [1-8] [static lacp] INTERFACES_HIST	Configure port aggregation group	Configure
show trunk group	Show all trunk groups	Configure
show trunk group [1-8]	Show trunk group [1 8]	Configure
no trunk group (1.8)	Remove trunk group [1-8]	Configure

STORM CONTROL GROUP

Command	Explanation	Mode
storm control broadcast enable	Enable the broadcast storm control	Configure
storm control broadcast level [low mid high]	Set the broadcast storm control level	Configure
storm-control multicast enable	Fnable the multicast storm control	Configure
storm-control multicast level [low mid high]	Set the multicast storm control level	Configure
storm control unknown unicest enable	Enable the unknown unicast storm control	Configure
storm-control unknown-unicast level (low mid high)	Set the unknown-unicast storm control level	Configure
show storm control broadcast	Display the broadcast storm control status	Configure
show storm control broadcast level	Display the broadcast storm control level	Configure
show storm-control multicast	Display the multicast storm control status	Configure
show storm-control multicast level	Display the multicaststorm control level	Configure
show storm-control unknown-unicast	Display the unknown-unicast storm control status	Configure
show storm-control unknown-unicast level	Display the unknown-unicast storm control level	Configure
no storm control broadcast	Disable the broadcast storm control	Configure
no storm control broadcast level	Default the broadcast storm control to level high	Configure
no storm-control multicast	Disable the multicast storm control	Configure
no storm-control multicast level	Default the multicast storm control to level high	Configure
no storm control unknown unicast	Disable the unknown unicast storm control	Configure
no storm-control unknown-unicast level	Default the unknown-unicast storm control to level high	Configure

802.1X GROUP

Command	Explanation	Mode
dott's authentication server [1 2] ip [IP]	Set 802 1X authentication server 1 or 2 address	Configure
dotfix authentication server [1[2] port [PORT]	Set 802 1X authentication server 1 or 2 port	Configure
dot1x authentication server [1 2] share key [KEY]	Sel 802.1X authentication server 1 or 2 share-key	Configure
datix authentication server type [local/radius]	Set 802 1X authentication server type	Configure

doi1x enable	Enable 802.1X protocol	Configure
dottx local-db [USER] [PASSWORD]	Set 802.1X local user database	Configure
dot1x authenticator enable	Set 802.1X authenticator	Intertace
dolfx mode [mac based port based]	Set 802 1X mode as 1_MAC-based, 2 Port based	Intertace
dot1x reautherdication enable	Set 802 1X resuthentication	Interfere
dot1x reauthentication period [80-85535]	Set 802.1X reauthentication period	Interface
show doils	Display 802.1X protocol state	Configure
show dot1x authentication server [1 2] lp	Display 802.1X authentication server 1 or 2 address	Configure
show dot1x authentication server [1 2] port	Display 802.1X authentication server 1 or 2 port	Configure
show dot1x authentication server [1]2] share key	Display 802.1X authentication server 1 or 2 key	Configure
show dot1x authentication server type	Display 802 1X authentication server type	Configure
show dottx brief	Display 002.1X information	Configure
show dot1x local-db	Display 802.1X users and password in database	Configure
show dot1x server brief	Display 802.1X RADIUS server	Configure
show dot1x authenticator	Display 802 1X authenticator state	Interface
show dot1x mode	Display 802.1X mode config	Interface
show dot1x reautherdication	Display 802.1X reauthentication state	Interface
show dot1x reauther/scatton period	Display 902.1X reauthoritication period(in sec.)	Interface
no dot1x	Disable 802.1X protocol	Configure
no dottix authentication server [1 2] ip	Default 802.1X authentication server 1 or 2 address	Configure
no dotta authentication server [1 2] port	Default 882.1X authentication server 1 or 2 port	Configure
no dot1x authentication server [1 2] share-key	Default 802.1X authentication server 1 or 2 share key	Configure
no dottix authentication server type	Default 802.1X authentication server type	Configure
no dotix local-db [USLR]	Remove an entry in 902.1X local database	Configure
no dottix authoriticator	Disable 802.1X authenticator	Interface
no dottix mode	Default 802-1X mode as MAC-based	Interface
no dottix reauthentication	Disable 802.1X reauthentication	Interface

PORT MIRROR GROUP

Command	Explanation	Mode
minor destination [DEST_PORT]	Set minor interface of destination	Configure
mirror enable	Enable port mirror	Configure
mirror source [rx tx both] [PORT_LIST]	Set mirror interface of source	Configure
show mirror	Show port mirror enable/disable state	Configure
show mirror destination	Show port mirror destination configuration	Configure
show mirror source	Show port mirror source configuration	Configure
no mirror	Disable port mirror	Configure
no mirror desfination	Delete port mirror Destination configuration	Configure
no mirror source	Delete port mirror Source configuration	Configure

LLDP GROUP

Command	Explanation	Mode
lidp enable	Enable LLDP protocol	Configure
lidp timer [5-32767]	Set LLDP timer	Configure
show lidp neighbor	Display LLDP neighbor	Configure
show lidp neighbor detail	Display LLDP neighbors in detail	Configure
show lidp state	Display LLDP status	Configure
show lidp timer	Display LLDP timer	Configure
no lidp	Disable LLDP protocol	Configure
no lidp timer	Default LLDP timer	Configure

Syslog Group

Command	Explanation	Mode
syslog local enable	Enable logging to local	Configure
syslog log clear	Clear sysing log	Configure
syslog remote enable	Enable logging to remote	Configure
syslog remote port [PDRT]	Set syslog remote server port	Configure
syslog remote server [ADDRESS]	Set syslog remote server address	Configure
syslog usb enable	Linable log to USB device	Configure
show syslog local	Display local logging state	Configure
show syslog log	Display sysing messages	Configure
show syslog remote	Display remote logging state	Configure
show syslog remote port	Display remote server port	Configure
show syslog remote server	Display remote server IP	Onfigure
show syslog usb	Display USB logging state	Configure
no sysiog local	Disable logging to local	Configure
no systog remote	Disable logging to remote	Configure
no sysiog remote port	Default syslog remote server port	Configure
no sysiog remote server	Clear systog remote server address	Configure
no syslog usb	Disable logging to USB	Configure

SMTP GROUP

Command	Explanation	Mode
smtp authentication enable	Lnable SMTP authoritication	Configure
smtp authentication password [PASSWORD]	Set SMTP password	Configure
snip authentication username [USER_NAME]	Set SMTP username	Configure
smlp enable	Enable SMTP	Configure
smtp receive [1-4] [RECLIVER_ADDRESS]	Set SMTP receiver [1-4] address	Configure

smip sender [SMTP_SENDER_ADDRESS]	Set SMTP sender	Configure
smtp server address [SMTP_SERVER_ADDRESS]	Set SMTP server address	Configure
smtp server port [SMTP_SERVER_PORT]	Set SMTP server port	Configure
smtp subject [SUBJECT]	Set SMTP subject	Configure
show smitp authentication state	Display SMTP authentication status	Configure
show smip authentication username	Display SMTP user name	Configure
show smtp receive [1-4]	Display SMTP receiver [1-4]	Configure
show smitp sender	Display SMTP sendor	Configure
show smtp server address.	Display SMTP server address	Configure
show smitp server port	Display SMTP server port	Configure
show smitp state	Display SMTP service	Configure
show smtp subject	Display SMTP subject	Configure
no smtp authentication	Disable SMTP authentication	Configure
no smtp authentication password	Clear SMTP password	Configure
no smtp authentication username	Clear SMTP user name	Configure
no smtp	Disable SMTP	Configure
no smtp receive [1-4]	Clear SMTP receiver [1-4]	Configure
no smtp sender	Clear SMTP sendor	Configure
no smtp server address	Clear SMTP server	Configure
no smtp server port	Clear SMTP server port	Configure
no smlp subject	Clear SMTP subject	Configure

EVENT GROUP

Command	Explanation	Mode
event alarm interface [lan1 lanN] down	Register an event of Interface DOWN	Compin
event elerm (powert (power2)	Register an event of power 1 or 2 failure	Onfigure
event sintp auth failure	Register an event of authentication failure	Corngine
event simp cold start	Register an event of cold start	Configure
event smtp interface [lan1-lanN] down	Register an event of Interface DUWN	Configure
event smtp interface (lan1 lanN) up	Register an event of Interface UP	Compre
event smtp (power1 (power2)	Register an event of power 1 or 2 tailure	Configure
event smtp warm-start	Register an event of warm-start	Compre
event samptrap auth failure.	Register an event of authentication failure	Configure
event snmptrap cold-start	Register an event of cold-start	Configure
event simptrap interface (lanti-lanN) down	Register an event of Interface DOWN	Consque
event samptrap interface (land-lanN) up	Register on event of interface UP	Configure
event simptrap (powert)power2)	Register an event of power 1 or 2 failure	Configure
event samptrap warm-start	Register on event of worm-start	Configure

event samptrap auth failure	Register an event of authentication failure	Configure
event samptrap cold-start	Register on event of cold-start	Configure
event samptrop interface [land-lanN] down	Register on event of Interface DOWN	Configure
event samptrap interface [lan1-tanN] up	Register an event of Interface UP	Configure
event snmptrap [power1 power2]	Register an event of power 1 or 2 failure	Configure
event snmptrap warm-start	Register an event of warm-start	Configure
event syslog auth-failure	Register an event of authentication failure	Configure
event syslog cold-start	Register an event of cold-start	Configure
event sysiog interface (lant-lanN) down	Register on event of Interface DOWN	Configure
event syslog interface [fan1-lanN] up	Register an event of Interface UP	Configure
event syslog (power1 (power2)	Register an event of power 1 or 2 failure	Configure
event syslog warm start	Register an event of warm start	Configure
show event alarm interface (lan/1-lanN) down	Display interface DOWN event registration	Configure
show event alarm [power1[power2]	Display power 1 or 2 event registration	Configure
show event sintp auth-failure	Display authentication failure event registration	Configure
show event smtp cold-start	Display cold-start event registration	Configure
show event smtp interface [lan14anN] down	Display interface DOWN event registration	Configure
show event smtp interface [lan14anN] up	Display interface UP event registration	Configure
show event sintp [power1 power2]	Display power 1 or 2 event registration	Configure
show event smtp warm-start	Display warm-start event registration	Configure
show event snmptrap auth-failure	Display authentication failure event registration	Configure
show event snmptrap cold-start	Display cold-start event registration	Configure
show event samptrap interface [lan1 lanN] down	Display interface DOWN event registration	Configure
show event snmptrap interface [lan1-lanN] up	Display interface UP event registration	Configure
show event snmptrap [power1 power2]	Display power 1 or 2 event registration	Configure
show event sninptrap warm-start	Display warm-start event registration	Configure
show event syslog auth-failure	Display authentication failure event registration	Configure
show event syslog cold-start	Display cold-start event registration	Configure
show event syslog interface [lan1-lanN] down	Display interface DOWN event registration	Configure
show event syslog interface [lan1-lanN] up	Display interface UP event registration	Configure
show event syslog [power1 power2]	Display power 1 or 2 event registration	Configure
show event syslog warm-start	Display warm-start event registration	Configure
no event alarm interface [lan1-lanN] down	Unregister an event of Interface DOWN	Configure
no event alarm [powert power2]	Unragister an event of power 1 or 2 failure	Configure
no event smtp auth-failure	Unregister an event of authentication failure	Configure
no event smtp cold-start	Unregister an event of cold-start	Configure
no event smtp interface (Jan1 lanN) down	Unregister an event of Interface DOWN	Configure

no event alarm [power1]power2]	Unregister an event of power 1 or 2 failure	Configure
no event smtp auth-tailure	Unregister an event of authentication failure	Configure
no event smtp cold-start	Unregister an event of cold-start	Configure
no event sintp interface [lan1-lanN] down	Unregister an event of Interface DOWN	Configure
no event smtp interface [lan1-lanN] up	Unregister an event of Interface UP	Configure
no event sintp [power1 power2]	Unregister an event of power 1 or 2 failure	Configure
no event smtp warm-start	Unregister an event of warm-start	Configure
no event samptrop auth-tailure	Unregister an event of authentication failure	Configure
no event snmptrap cold-start	Unregister an event of cold-start	Configure
no event samptrep interface [lan1-lanN] down	Unregister an event of Interface DOWN	Configure
no event samptrap interface [Jan1-JanN] up	Unregister an event of Interface UP	Configure
no event samptrap [power1 power2]	Unregister an event of power 1 or 2 failure	Configure
no event samptrap warm-start	Unregister an event of warm-start	Configure
no event syslog auth-failure	Unregister an event of authentication failure	Configure
no event syslog cold start	Unregister an event of cold start	Configure
no event systog interface [lan1-lanN] down	Unregister an event of Interface DOWN	Configure
no event syslog interface (lan1 lanN) up	Unregister an event of Interface UP	Configure
no event sysiog (power1 (power2)	Unregister an event of power 1 or 2 folium	Configure
no event syslog warm start	Unregister an event of warm start	Configure

MAC ADDRESS TABLE GROUP

Command	Explanation	Mode
dear mac address table dynamic	Flush dynamic MAC addresses in MAC table	Contigue
mac address add [VID. 1-4094] [MAC_ADDR] [PORT]	Set a MAC address to MAC table	Configure
show mac address	Display MAC table	Configure
no mac address [VID: 1-4094] [MAC_ADDR]	Remove a MAC address from FDB	Configure

USB GROUP

Command	Explanation	Mode
usb auto-backup	Auto save to USB if running config is changed	Configure
usb auto-load	Auto load config from USD to switch	Configure
show usb auto backup	Display USB auto backup activated status	Configure
show usb auto-load	Display USB auto load activated status	Configure
no usb auto-backup	Disable auto save	Configure
no usb auto-load	Disable auto load	Configure

FILE GROUP

Command	Explanation	Mode
copy running-config startup-config	Save running-config to startup-config	Configure
copy running config usb [file]	Save running config to USB	Configure
copy startup config running config	Restore from startup config	Configure
copy usb firmware [file]	Upgrade firmware from USB	Configure
copy startup config usb [file]	Save startup config to USB	Configure
copy usb startup config [file]	Restore startup config from USB	Configure
upload file name [FILE_NAME]	Set uploading file name	Configure
upload server ip [SERVER_IP]	Set uploading server IP	Configure
upload tftp	Upload and update firmware via TETP (slower)	Configure
upload wget	Upload and update firmware via HTTP (faster)	Configure
show upload file name	Display uploading file name	Configure
show upload server ip	Display uploading server IP	Configure
no uploed file name	Default uploading file name	Configure
no upload server ip	Clear uploading server IP	Configure