Руководство по эксплуатации IP-камеры SV2215-R36P2

Оглавление

ГЛАВА 1. МЕРЫ ПРЕДОСТОРОЖНОСТИ	2
ГЛАВА 2. ОБЩИЕ СВЕДЕНИЯ	4
2.1. Общие СВЕДЕНИЯ ОБ IP-ВИДЕОКАМЕРЕ BEWARD	4
2.1.1. Особенности IP-видеокамеры BEWARD	5
2.1.2. Основные характеристики	5
2.1.3. Комплект поставки	6
2.1.4. Установки по умолчанию	6
2.2. Для чего необходимо данное Руководство	7
2.3. МИНИМАЛЬНЫЕ СИСТЕМНЫЕ ТРЕБОВАНИЯ	
ГЛАВА 3. РАБОТА СО СТОРОННИМИ КЛИЕНТАМИ	8
ГЛАВА 4. УСТАНОВКА АСТІVЕХ КОМПОНЕНТОВ И АВТОРИЗАЦИЯ	9
ГЛАВА 5. ОСНОВНОЕ ОКНО	14
ГЛАВА 6. АРХИВ	16
ГЛАВА 7. ОСНОВНЫЕ НАСТРОЙКИ	
7.1 Видео:	18
7.2 Изображение:	18
7.3 Аудио:	22
7.4 Сеть:	
7.5 Дата и время:	
ГЛАВА 8. ДОПОЛНИТЕЛЬНЫЕ НАСТРОЙКИ	
8.1 Оповещение	
8.2 ХРАНИЛИЩЕ	
8.3 Безопасность	
8.4 SIP	
8.5 SMART EVENT.	
8.6 ЖУРНАЛ	
ГЛАВА 9. СИСТЕМА	
ГЛАВА 10. ОБСЛУЖИВАНИЕ	
10.1 ОБСЛУЖИВАНИЕ	
10.2 Автоперезагрузка	
ПРИЛОЖЕНИЯ	
Приложение А. Заводские установки	
Приложение В. Гарантийные обязательства	-
Приложение С. Права и поддержка	
ПРИЛОЖЕНИЕ D. ГЛОССАРИЙ	48

Глава 1. Меры предосторожности

Перед использованием необходимо помнить нижеследующее.

Данный продукт удовлетворяет всем требованиям безопасности. Однако, как и любой электроприбор, в случае неправильного использования, может вызвать пожар, что, в свою очередь, может повлечь за собой серьезные последствия. Во избежание несчастных случаев обязательно изучите инструкцию.

ВНИМАНИЕ!

Используйте при эксплуатации только совместимые устройства. Использование устройств, не одобренных производителем, недопустимо.

Соблюдайте инструкцию по эксплуатации!

Избегайте длительного использования или хранения камеры в неблагоприятных условиях:

- При слишком высоких или низких температурах (рабочая температура устройств от -40 до +60 °C).
- Избегайте попадания прямых солнечных лучей в течение длительного времени, а также нахождения поблизости отопительных и обогревательных приборов.
- Избегайте близости с устройствами, обладающими большим электромагнитным эффектом.
- Недопустима установка камеры в местах с сильной вибрацией.
- Недопустим монтаж камеры при температуре ниже -10 °C.

ВНИМАНИЕ!

В случае неисправности камеры свяжитесь с сервисным центром ООО «НПП «Бевард».

В случае некорректной работы камеры:

- При обнаружении дыма или необычного запаха.
- При попадании воды или других инородных объектов внутрь.
- При падении камеры или повреждении корпуса:

Выполните следующие действия:

- Отключите камеру от источника питания и отсоедините все остальные провода.
- Свяжитесь с сервисным центром ООО «НПП «Бевард». Контактные данные Вы можете найти на сайте http://www.beward.ru/.

Транспортировка

При транспортировке положите камеру в упаковку производителя или любой другой материал соответствующего качества и ударопрочности.

Вентиляция

Во избежание перегрева, ни в коем случае не блокируйте циркуляцию воздуха вокруг камеры.

Чистка

Используйте мягкую сухую ткань для протирания внешних поверхностей. Для трудновыводимых пятен используйте небольшое количество чистящего средства, после чего насухо вытрите поверхность.

Не используйте летучие растворители, такие как спиртосодержащие средства или бензин, так как они могут повредить корпус камеры.

Глава 2. Общие сведения

2.1. Общие сведения об IP-видеокамере BEWARD

Скоростная купольная IP-камера уличного исполнения с ИК-подсветкой и поддержкой питания по High PoE 30 Вт предназначена для организации профессионального видеонаблюдения в суровых климатических условиях. Мощная оптика реализует 36-кратное оптическое увеличение, высокая скорость процессора обеспечивает быстрый переход между сценами. IP-камера поддерживает эффективный формат обработки видеосигнала H.265.

Puc. 2.1

IP-камера BEWARD позволяет просматривать видео в реальном времени через стандартный Интернет-браузер.

Камера способна передавать видеопоток в форматах сжатия H.265, H.264 и MJPEG. Формат H.265 идеально подходит в условиях ограниченной полосы пропускания. При его использовании достигается наименьший трафик и хорошее качество изображения. Формат MJPEG предназначен для записи и просмотра видеоизображения в наилучшем качестве, но требует больших сетевых ресурсов и места на жестком диске (для записи).

Камера подключается к сети при помощи проводного интерфейса 100BASE-TX.

Поддержка карт памяти типа microSDXC, позволяет сделать систему видеонаблюдения еще более надежной: важная информация не пропадет при потере соединения, в полном объеме она может быть сохранена на карте памяти. В дальнейшем, ее можно будет воспроизвести как непосредственно с карты, так и удаленно после устранения технических неполадок сети.

2.1.1. Особенности IP-видеокамеры BEWARD

- Высококачественный КМОП-сенсор с прогрессивным сканированием
- ИК-подсветка с дальностью работы до 250 метров
- Поддержка карт памяти типа microSD/SDXC
- Профессиональное программное обеспечение в комплекте
- Одновременное кодирование трех потоков в форматах Н.264, Н.265 и МЈРЕС
- Режим «День/Ночь», электромеханический ИК-фильтр
- Расширенный динамический диапазон (WDR)
- Цифровая система шумоподавления (3DNR)
- Встроенный веб-сервер для наблюдения и настройки
- Поддержка протокола HTTPS
- Встроенный детектор движения
- Защита от внешнего воздействия по стандарту IP66
- Поддержка ONVIF Profile S

2.1.2. Основные характеристики

- Светочувствительный элемент: 2 Мп, КМОП 1/2" SONY Exmor R с прогрессивным сканированием
- Увеличение: Оптическое: 36x, f=5.8-210.0 мм
- Чувствительность: 0.001 лк (день) / 0.0005 лк (ночь)
- Разрешение: 1920х1080, 1280х960, 1280х720, 704х576, 640*480, 640*360, 352*288, 320*240, 320*192, 320*176
- Одновременное кодирование трех потоков: H.264, H.265, MJPEG
- Скорость кадров: до 60 к/с
- Встроенный многозонный детектор движения с регулировкой чувствительности
- Отправка кадров по электронной почте, на FTP-сервер, на NAS и карту памяти по расписанию периодически и при возникновении тревожного события.
- Отправка видео на FTP-сервер, NAS и карту памяти по расписанию и при возникновении тревожного события.
- Питание: 24 В 3 А (AC), High PoE (30 Вт)
- Рабочая температура: от -40 до +60 °C
- Поддерживаемые протоколы: TCP/IP, IPv4/v6, HTTP, HTTPS, SMTP, FTP, DNS, DHCP, PPPoE, UPnP, RTSP, UDP, NTP, IGMP, ICMP, ONVIF Profile S
- Поддержка отраслевого стандарта ONVIF Profile S

2.1.3. Комплект поставки

- ІР-видеокамера
- Диск с документацией и ПО
- Упаковочная тара
- Набор для монтажа
- Кронштейн
- Сальник для кабеля

ВНИМАНИЕ!

BEWARD оставляет за собой право на изменение комплектации оборудования и его любых характеристик без предварительного уведомления.

2.1.4. Установки по умолчанию

• Имя пользователя: **admin**

Пароль: admin

По умолчанию камера получает IP-адрес 192.168.0.99

2.2. Для чего необходимо данное Руководство

IP-видеокамера BEWARD – это камера видеонаблюдения, которая обладает встроенным веб-сервером, сетевым интерфейсом и подключается к сети Ethernet.

Изображение, транслируемое данной камерой, можно просматривать через стандартный веб-браузер.

Данное Руководство содержит наиболее полные сведения об управлении камерой при помощи веб-интерфейса и особенностях ее настройки при работе в локальных сетях и сети Интернет без использования программного обеспечения, только с помощью встроенного вебсервера камеры.

Настоящее Руководство содержит именно те сведения, которые необходимы для полноценной работы с камерой без использования дополнительно программного обеспечения.

2.3. Минимальные системные требования

Перед использованием устройства убедитесь, что Ваш компьютер соответствует минимальным требованиям (или выше).

Наименование	Требования
Операционная система	Windows 7/8/10
Рекомендуемый веб-браузер	Internet Explorer 11.0 или выше

ПРИМЕЧАНИЕ!

- 1. Если Вам не удается просмотреть записанные файлы, пожалуйста, установите кодек Xvid или свободно распространяемый плеер VLC (http://www.videolan.org/vlc/).
- 2. Для корректной работы может потребоваться обновление ряда компонентов ОС Windows до последней версии (Net Framework, Windows Media Player и др.).

Глава 3. Работа со сторонними клиентами

Если необходимо, Вы можете получить доступ к видеопотоку при помощи стороннего RTSP-клиента. В качестве RTSP-клиентов можно использовать RTSP-плееры реального времени, например: VLC

RTSP (Real Time Streaming Protocol – протокол передачи потоков в режиме реального времени) является прикладным протоколом, предназначенным для использования в системах, работающих с мультимедиа-данными и позволяющих клиенту удалённо управлять потоком данных с сервера, предоставляя возможность выполнения команд, таких как «Старт», «Стоп».

ПРИМЕЧАНИЕ!

При подключении к камере через сеть Интернет скорость зависит от канала доступа.

Доступ к видеопотоку через сторонние RTSP-клиенты осуществляется при помощи команды rtsp://<login>:<password>@<lP>:<PORT>/ <X>,где:

- < login > имя пользователя
- <password> пароль пользователя
- <IP> IP-адрес камеры;
- **<PORT>** RTSP-порт камеры (значение по умолчанию 554.);
- **<X>** команда профиля видеопотока: main основной поток, sub альтернативный поток, third второй альтернативный поток

Пример команды: rtsp://admin:admin@192.168.0.99:554/main

Тип сжатия для данного потока задается в настройках кодирования.

Глава 4. Установка ActiveX компонентов и авторизация

Шаг 1: для начала работы подключите камеру согласно инструкциям, приведенным в Руководстве по подключению.

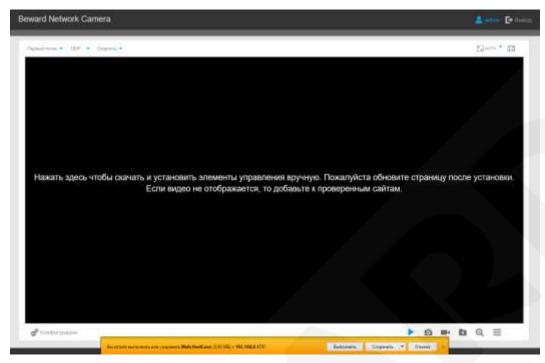
Шаг 2: запустите браузер Internet Explorer, в адресной строке введите запрос вида: *http://<IP>:<PORT>*, где <IP> - IP-адрес камеры, <PORT> - HTTP-порт камеры.

ПРИМЕЧАНИЕ!

IP-адрес камеры по умолчанию – **192.168.0.99**, HTTP-порт по умолчанию – **80** и не указывается.

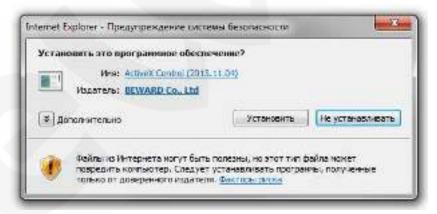
ПРИМЕЧАНИЕ!

Существует 2 варианта присвоения IP-адреса камере: первый – автоматическое присвоение адреса (DHCP), при котором адрес камере назначается автоматически DHCP-сервером в соответствии с конфигурацией Вашей локальной сети; второй – использование определенного IP-адреса, который Вы задали сами.


Для просмотра изображения с IP-камеры через браузер Internet Explorer используются компоненты ActiveX. Internet Explorer не имеет этих компонентов в своем составе и загружает их непосредственно с камеры. Если компоненты не установлены, Вы увидите следующее сообщение:

Puc. 4.1

Нажмите на текст надписи. В нижней части окна браузера появится всплывающее оповещение (*Puc. 4.2*).



Puc. 4.2

Шаг 3: нажмите на кнопку [Выполнить] для установки компонентов ActiveX.

Шаг 4: система безопасности браузера Internet Explorer может автоматически блокировать установку ActiveX. Для продолжения установки нажмите кнопку **[Установить]** в окне подтверждения установки (*Puc. 4.3*).

Puc. 4.3

Шаг 5: для корректной установки компонентов ActiveX закройте Internet Explorer и нажмите [Install] в окне, представленном на *Рисунке 4.4*, если таковое появится.

Puc. 4.4

Шаг 6: после успешной установки Вы увидите сообщение «Completing the MsActiveX Setup Wizard». Нажмите кнопку [Finish] для выхода из окна установки (*Puc. 4.5*).

Puc. 4.5

ПРИМЕЧАНИЕ!

В операционной системе Windows 7 и в браузере Internet Explorer 9.0 названия меню или системные сообщения могут отличаться от названий меню и системных сообщений в других ОС семейства Windows или в других браузерах.

ПРИМЕЧАНИЕ!

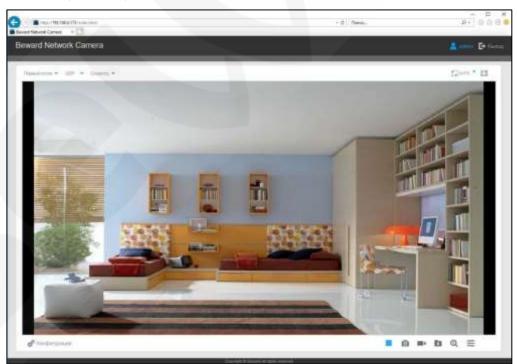
При установке ActiveX для OC Windows 7 при включенном контроле учетных записей будет производиться блокировка установки, о чем пользователю будет выдано уведомление. Для разрешения установки необходимо утвердительно ответить в появившемся окне.

Шаг 8: откройте Internet Explorer. После установки компонентов ActiveX необходимо удалить файлы cookie Вашего браузера.

Шаг 9: после удаления файлов cookie закройте и повторно откройте браузер.

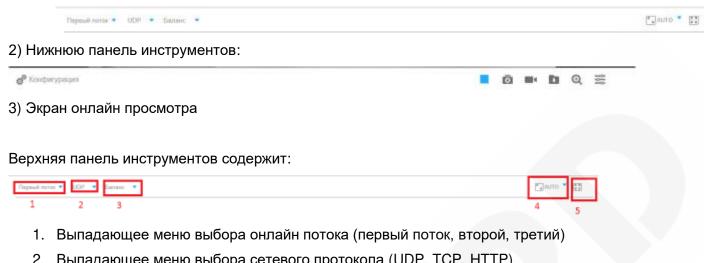
Шаг 10: в адресной строке браузера введите IP-адрес камеры и нажмите [Enter].

Шаг 11: откроется окно авторизации. Введите имя пользователя и пароль. По умолчанию используется имя пользователя – **admin**, пароль по умолчанию – **admin** (*Puc. 4.6*).


ВНИМАНИЕ!

После авторизации Вы можете изменить имя пользователя и пароль в меню *Настройки* – *Системные* – *Пользователи*. В случае утери пароля или имени пользователя, IP-камеру можно вернуть к заводским установкам. Для сброса настроек необходимо в течение десяти секунд нажать кнопку сброса три раза с промежутками более 1 секунды между нажатиями.

Puc. 4.6


После успешной авторизации Вы получите доступ к элементам управления камеры и изображению с нее (*Puc. 4.7*).

Puc. 4.7

Главное окно веб-интерфейса камеры условно разделено на 1) Верхнюю панель инструментов:

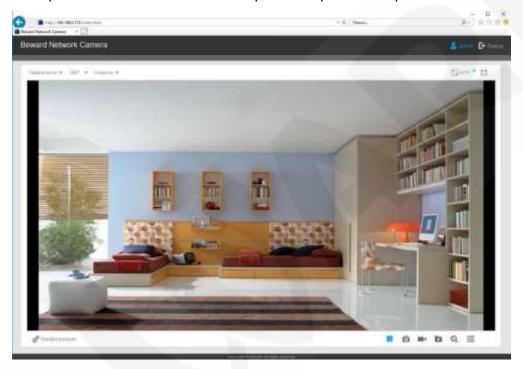
- 2. Выпадающее меню выбора сетевого протокола (UDP, TCP, HTTP)
- 3. Выпадающее меню выбора режима потока (Баланс, Скорость, Качество)
- 4. Кнопка выбора масштаба окна отображения видеопотока
- 5. Кнопка разворота окна отображения видеопотока в полный экран

Нижняя панель инструментов содержит:

- 1. Вкладку Конфигурация (подробное описание работы вкладки будет представлено ниже)
- 2. Элементы управления онлайн изображением (Остановка/запуск, Сделать снимок, Начать запись, Путь сохранения файлов, Цифровой зум и настройки изображения).

Если по каким-то причинам установка ActiveX прошла некорректно, Вы можете установить необходимые компоненты вручную. Для этого:

Получите доступ к странице авторизации, повторив шаги 1 и 2 в начале данной главы. Для загрузки ActiveX компонентов нажмите ссылку, как показано на *Рисунке. 4.8.*


Puc. 4.8

Глава 5. Основное окно

Вкладка "Конфигурация" веб-интерфейса IP-камеры содержит пять разделов – [Живое видео], [Архив], [Основные настройки], [Дополнительные], [Система], [Обслуживание].

Раздел «Живое видео» предназначен для работы с видеоизображением реального времени. Доступны следующие функции: выбор основного или альтернативного потока для просмотра, моментальный снимок, запись видео, увеличение, полноэкранный режим, режим сохранения соотношения сторон, воспроизведение видеопотока в оригинальном разрешении, управление моторизованным объективом камеры и настройки изображения.

Puc. 5.1

Первый поток / Второй/ Третий: просмотр основного или альтернативных потоков видео. Основной поток имеет более высокое разрешение по сравнению с альтернативными. Настройка параметров видеопотоков осуществляется в меню: Конфигурация – Основные Настройки – Видео – Разрешение.

Снимок: нажмите данную кнопку для сохранения моментального снимка текущего изображения с камеры. Снимок будет сохранен в заданную пользователем директорию в формате JPEG.

Запись: нажмите данную кнопку для включения записи с камеры. Записанный файл будет сохранен в заданную пользователем директорию в формате AVI.

Цифровой зум: для того, чтобы увеличить определенную область изображения, нажмите кнопку **[Цифровой зум]**, затем, нажав и удерживая левую кнопку мыши, растяните рамку на интересующей Вас области. После этого откроется новое окно с увеличенной областью изображения. Размеры открывшегося окна можно изменять. Для этого наведите курсор мыши на

границу окна и, нажав и удерживая левую кнопку мыши, измените его размер. Для возврата к начальному режиму просмотра, закройте окно увеличения и нажмите кнопку **[Цифровой зум]**.

Полный экран: нажмите данную кнопку, чтобы убрать с экрана элементы управления и растянуть изображение на весь экран. Нажатие кнопки **[ESC]** клавиатуры или щелчок правой кнопкой мыши на изображении выключит полноэкранный режим.

Вписать в окно: нажмите данную кнопку, чтобы уместить все изображение в текущем окне используя корректное соотношение сторон.

Реальный размер: нажмите данную кнопку, чтобы установить оригинальное разрешение изображения с камеры.

Настройки изображения:

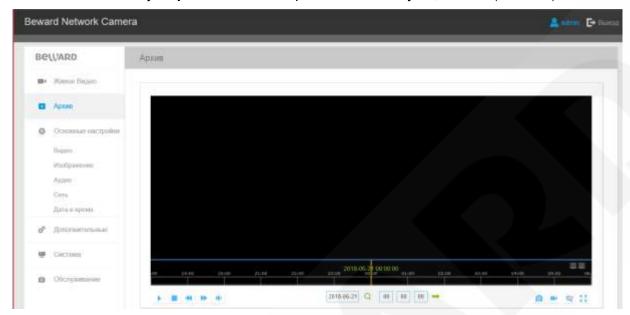
Puc. 5.2

Для изменения угла обзора используйте кнопки , для настройки фокуса кнопки .

При нажатии кнопки **[Зум +]** изображение будет приближаться, то есть угол обзора будет уменьшиться.

При нажатии кнопки [Зум –] изображение будет отдаляться, а угол обзора увеличиваться.

При нажатии кнопки [Фокус +] фокусировка будет производиться на ближние объекты.


При нажатии кнопки [Фокус -] фокусировка будет производиться на дальние объекты.

Изображение: передвигайте соответствующие ползунки для настройки следующих параметров изображения: «Яркость», «Контраст», «Насыщенность», «Резкость», «Шумоподавление». Если Вы хотите вернуть значения по умолчанию, нажмите кнопку [Настройки по умолчанию].

Глава 6. Архив

Нажмите кнопку **«Архив»**, чтобы открыть соответствующее окно (*Puc. 6.1*).

Puc. 6.1

Здесь пользователю доступен поиск по дате кадров и видео на карте памяти.

1) Нажмите на кнопку с датой и в появившемся окне выберите необходимый день.

ПРИМЕЧАНИЕ!

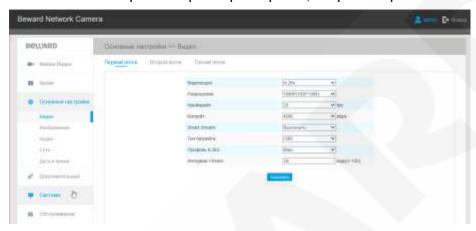
Дата ярко-красного цвета – текущая дата, темно-красного на белом фоне – выходной день, темно-красный на синем фоне – дата выбранная сейчас

2) Нажмите 上 для воспроизведения видео, найденного на выбранную дату

Для управления воспроизведением используйте кнопки на панели инструментов:

Где:

Кнопка	Функция
	Воспроизведение
	Пауза
	Остановка
•	Уменьшить скорость
>	Увеличить скорость
(1)	Аудио Вкл./Выкл.
Q	Поиск
→	Перейти
Ø /⊕	Расширить/Сузить временную полосу
	Начать/Остановить запись
	Снимок
(Q)/(Q)	Зум
	Полный экран


Глава 7. Основные настройки

Для перехода в меню настроек нажмите кнопку **«Основные настройки»** в меню "конфигурация" веб-интерфейса камеры.

Меню "Основные настройки" содержит следующие пункты:

7.1 Видео:

Данный пункт меню позволяет настроить параметры первого, второго и третьего потоков

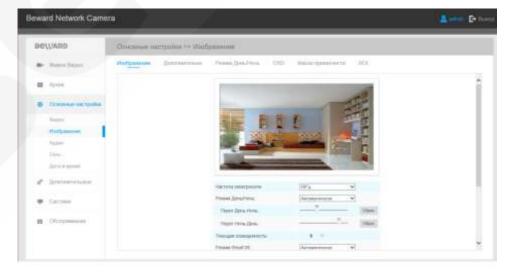
Видеокодек: позволяет выбрать кодек Н.265, Н.264, или МЈРЕС

Разрешение: выбор разрешения потока

Фреймрейт: Выбор количества кадров в секунду транслируемого потока

Битрейт: Выбор битрейта потока

Smart stream: включение функции smart stream.

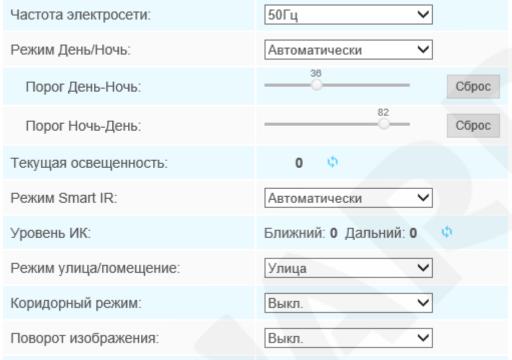

Тип битрейта: устанавливает тип битрейта (CBR – постоянный, VBR – переменный)

Профиль Н.264: позволяет выбирать профиль видеокодека, если выбран Н.264

Интервал I-frame: позволяет задать интервал ключевого кадра

7.2 Изображение:

Ниже представлена страница настроек меню "Изображение"



Данное меню содержит следующие подпункты:

1) Изображение

Настраиваемые параметры данной группы представлены на картинке ниже

Puc. 7.2

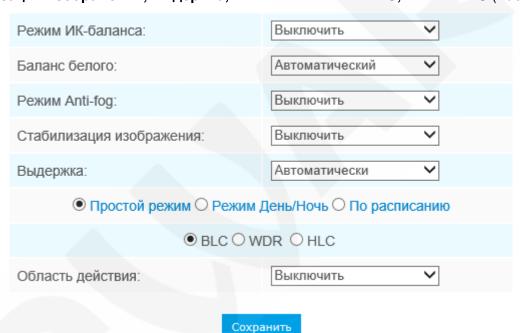
Частота электросети: 50/60 Гц. Режим 60 Гц необходимо выбрать, если источники света на объекте наблюдения питаются от электросети с частотой 60 Гц. При этом время выдержки выставляется автоматически кратным 30. Данный режим актуален для США и других стран, в которых стандарт частоты переменного напряжения в бытовой электросети — 60Гц.

Режим 50 Гц необходимо выбрать, если источники света на объекте наблюдения питаются от электросети с частотой 50 Гц. При этом время выдержки выставляется автоматически кратным 25. Данный режим актуален для России, так как частота переменного напряжения в бытовой электросети составляет 50 Гц.

Режим День/Ночь: настройка перехода IP-камеры в режимы «День» и «Ночь»:

- Ночной режим: камера всегда будет работать в ночном режиме
- Дневной режим: камера всегда будет работать в дневном режиме
- **Автоматически:** активация режимов «**День»** и **«Ночь»** будет происходить по встроенному датчику освещения. При выборе данного пункта появляется меню, в котором вы можете задать порог переключения для перехода День-Ночь и Ночь-день.
- **Вручную:** активация режимов «**День»** и «**Ночь»** будет происходить по расписанию. При выборе данного пункта появляются дополнительные поля для установки времени перехода в режимы.

Режим Smart IR: Включение автоматического или настроенного вручную режима Smart IR

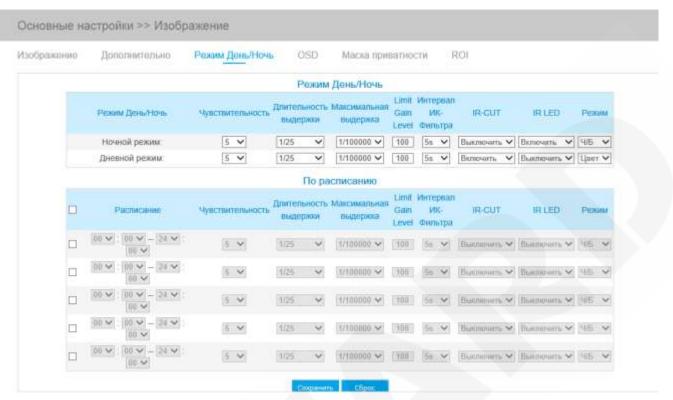

Режим улица/помещение: переключение параметров камеры для работы в уличных условиях или в условиях помещения

Коридорный режим: разворот картинки на 90 градусов по часовой или против часовой стрелки

Поворот изображения: Позволяет отразить изображение с камеры горизонтально, вертикально или повернуть на 180 градусов

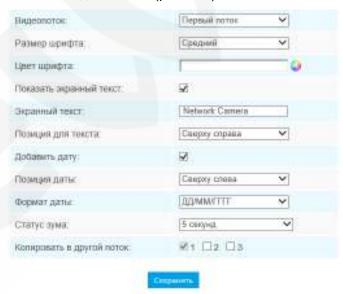
2) Дополнительно

Группа настроек пункта «Дополнительно»: предназначена для настройки таких параметров изображения как **Режим ИК-баланса, баланс белого, режим Anti-fog, стабилизация изображения, выдержка,** а также включения **BLC**, **WDR и HLC** (*Puc. 7.3*).

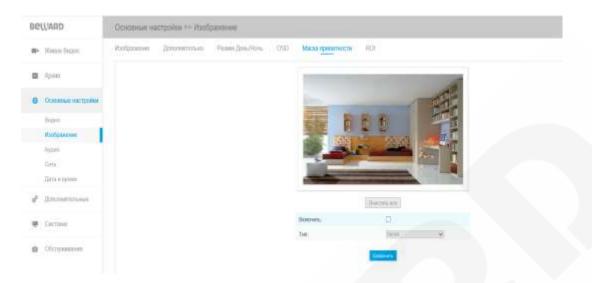


Puc. 7.3

3) Режим день/ночь

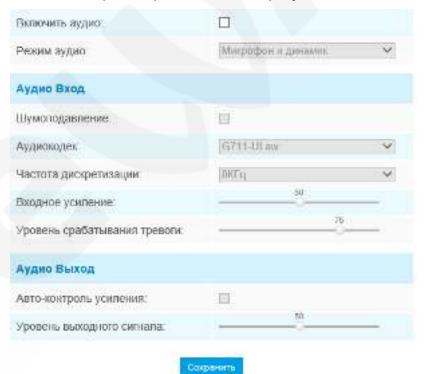

Данная группа настроек позволяет максимально точно настроить работу камеры в режимах День/Ночь (*Puc. 7.4*)

Puc. 7.4


4) OSD - Данная группа настроек предназначена для настройки отображения накладываемого текста в видеопотоке (рис. 7.5)

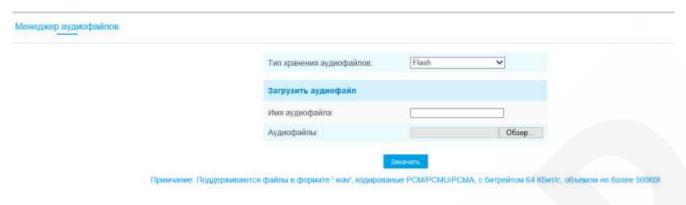
Puc. 7.5

5) Маска приватности - Данная группа настроек предназначена для установки маски приватности на изображении. Ниже представлена страница настроек маски видеоизображения (*Puc. 7.6*).

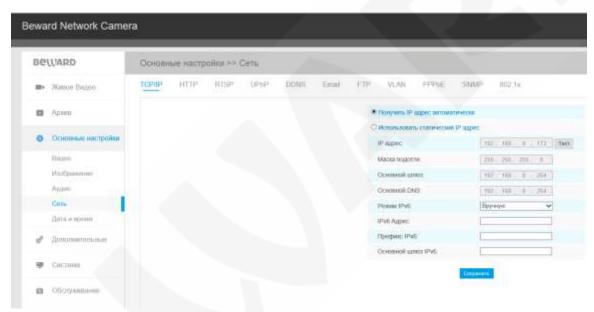


6) ROI - группа настроек предназначенная для настройки отдельных зон наблюдения

7.3 Аудио:


Данное меню содержит 2 группы настроек: «Аудио» и «Менеджер аудиофайлов».

Группа настроек **«Аудио»** предназначена для настройки параметров звукозаписи и воспроизведения. Данные настройки представлены на рисунке ниже:


Настройка **«Менеджер аудиофайлов»** позволяет сохранять аудиофайлы на SD-карту и flash-память.

7.4 Сеть:

Страница настройки основных параметров сетевого соединения представлена на рисунке ниже:

Меню "Сеть" содержит следующие пункты:

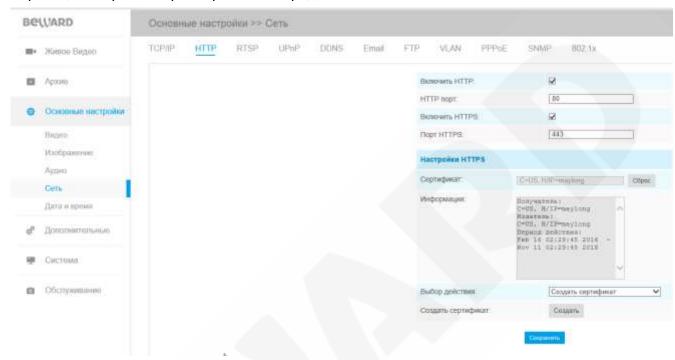
1) TCP/IP – данный пункт позволяет настроить основные сетевые параметры камеры вручную или задать получение по DHCP

IP-адрес: если опция **DHCP** отключена, в данном поле необходимо назначить IP-адрес вручную.

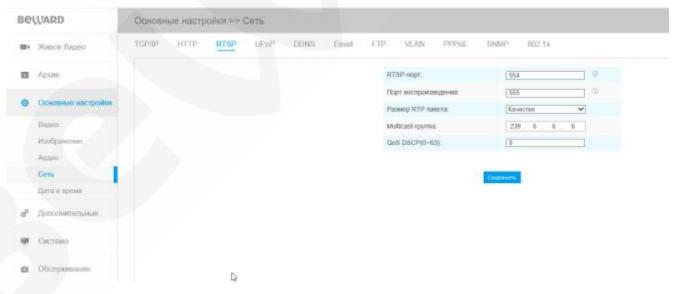
Маска подсети: по умолчанию используется значение 255.255.255.0 (данный параметр изменять не рекомендуется).

Основной шлюз: установите адрес шлюза.

Основной DNS: установите предпочитаемый адрес DNS.

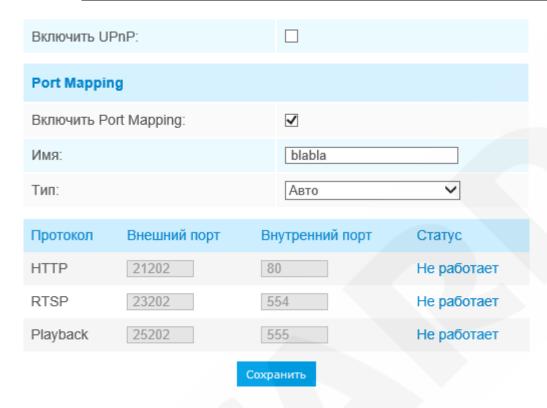

Режим IPv6: позволяет использовать 128-разрядные размеры IP-адресов для настройки сетевого соединения камеры

HTTP – Данный пункт предназначен для настройки и управления HTTP и HTTPSсоединениями.



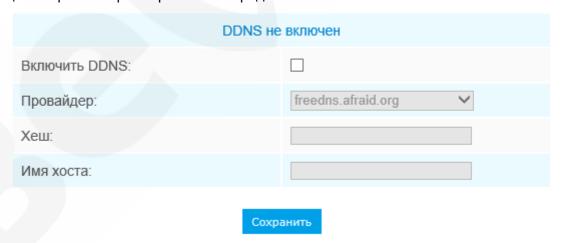
Вы можете создать самоподписанный сертификат или сделать запрос на создание сертификата в центре сертификации.

Страница настройки параметров НТТР представлена ниже:



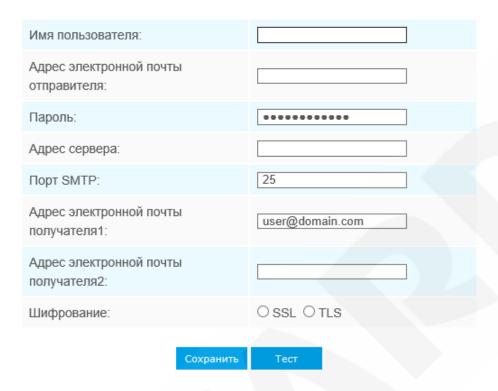
RTSP – данный пункт позволяет настраивать параметры rtsp потока. Страница настройки параметров RTSP представлена ниже.

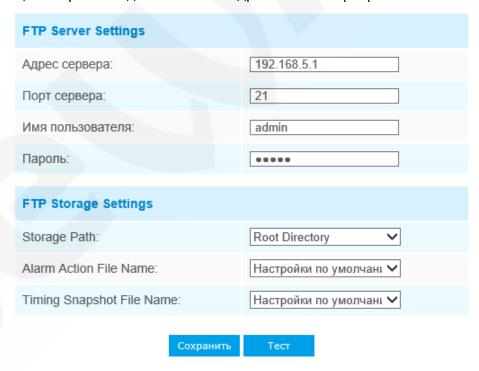
UPnP – пункт меню для настройки параметров UPnP. Страница настройки параметров RTSP представлена ниже.



DDNS - Меню предназначено для настройки соединения с использованием услуг сервиса DDNS. Сервис DDNS позволит Вам упростить доступ к IP-камере из сети Интернет, если в Вашем распоряжении имеется только постоянно изменяющийся публичный динамический IP-адрес.

Каждый раз при своем изменении Ваш публичный динамический IP-адрес будет автоматически сопоставляться с неким альтернативным доменным именем, к которому можно обратиться из сети Интернет в любой момент времени.


Страница настройки параметров DDNS представлена ниже:

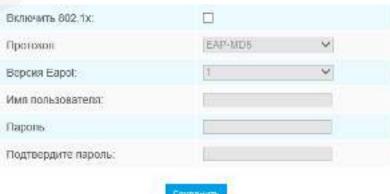

E-mail - Данный пункт меню позволяет установить настройки почтового клиента для использования опции отправки кадров во вложении письма электронной почты.

Страница настройки параметров E-mail представлена ниже:

FTP - Данный пункт меню позволяет установить настройки FTP-клиента для использования опции отправки видеозаписей и кадров на FTP-сервер.

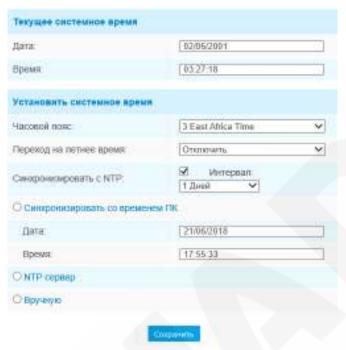
РРРоЕ - Данный пункт позволяет настроить РРРоЕ соединение.

Включить РРРоЕ:	
Динамический IP:	0.0.0.0
Имя пользователя:	
Пароль:	
Подтвердите пароль:	


Примечание: Если включены UPnP и PPPoE, будет работать только PPPoE.

данный пункт меню позволяет настроить протокол сетевого обмена для управления устройствами в ІР-сетях

802.1х - позволяет задать настройки стандарта 802.1х



Сахранить

7.5 Дата и время:

Данное меню позволяет настроить параметры даты и времени на камере. Настройки даты и времени представлены ниже:

[Текущее системное время] отображает текущие настройки даты и времени.

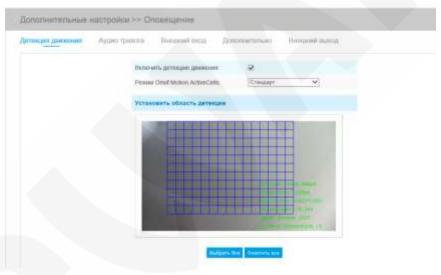
[Установить системное время] позволяет настроить системное время на камере а так же синхронизацию с NTP-сервером, либо ПК

Глава 8. Дополнительные настройки

Меню "Дополнительные настройки" содержит следующие пункты:

8.1 Оповещение.

Данный пункт предназначен для настройки оповещений при срабатывании одной из следующих тревог: Детектор Движения, Детектор звука, Тревожный вход, Тревожный выход, а также Потеря сети и конфликт IP-адресов.


Детектор движения.

Для настройки работы детектора движения необходимо:

Шаг 1: Активировать пункт "Включить детекцию движения"

Шаг 2: Выбрать режим ONVIF Motion ActionCells. При подключении камеры к IP-видеорегистраторам BEWARD и к большинству IP-видеорегистраторов других производителей, следует выбрать режим совместимости.

Шаг 3: выбрать область детекции

Шаг 4: Настроить расписание работы

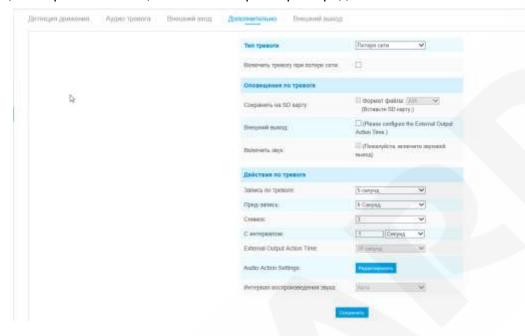
Шаг 5: Настроить действие при срабатывании детекции

Где:

Параметр	Описание
Сохранить на SD карту	Сохранить файл записи тревоги на SD-карту.
Сохранить на NAS	Сохранить файл записи тревоги на NAS
Загрузить на FTP	Загрузить файлы на FTP.
Отправить по SMTP	Загрузка файлов через SMTP.
Внешний выход	Если у камеры есть тревожные выходы, вы можете активировать их при тревоге. (Также необходимо настроить время действия выходов)
Включить звук	Вы можете активировать эту опцию если камера оборудована микрофоном
Сообщение на SIP- телефон	Звонок на SIP телефон. (Необходимо активировать функцию SIP)
НТТР Уведомление	Отправка тревоги на указанный HTTP URL.

Аудио тревога.

Перед настройкой Аудио тревоги необходимо активировать аудио на камере. Настройки аудио тревоги аналогичны описанным выше настройкам детектора движения.

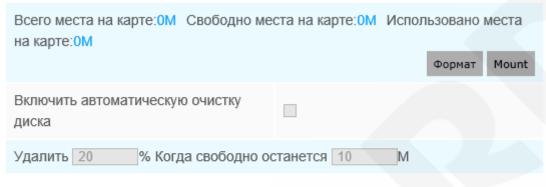

Внешний вход.

Настройки тревоги внешнего входа аналогичны настройкам детектора движения.

Дополнительно.

Страница настроек и таблица описания параметров представлены ниже.

Параметр	Описание
Тип тревоги	Данный пункт позволяет выбрать настройку тревоги при Потери сети или Конфликте IP-адресов
Оповещения по тревоге	Сохранить на SD карту: Сохранить файл на SD Карту Внешний выход: Настройка действий тревожного выхода Включить звук: Вы можете активировать эту опцию если камера оборудована микрофоном
Действия по тревоге	Запись по тревоге: Доступны 6 периодов (5, 10, 15, 20, 25, 30 сек.) Пред-запись: Время записи перед тревогой, 0~10 сек. Снимок: Количество снимков 1~5 Интервал: Данный пункт не может быть активирован пока не выбран хотя бы 1 снимок Время действия внешней тревоги: Длительность тревоги внешнего выхода. Не может быть выбран пока не настроены действия внешнего выхода. Настройки действий аудио: Настройка расписания для активации разных аудиофайлов в разное время. Интервал воспроизведения: Доступны Авто/ 10 секунд/ 30 секунд/ 1
	интервал воспроизведения: доступны Авто/ 10 секунд/ 30 секунд/ 1 минута/ 5 минут/ 10 минут

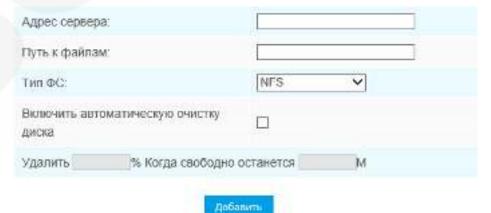


8.2 Хранилище.

Данное меню содержит следующие пункты: SD-карта, NAS, расписание записи, Обзор SD-карты, снимок.

SD-карта.

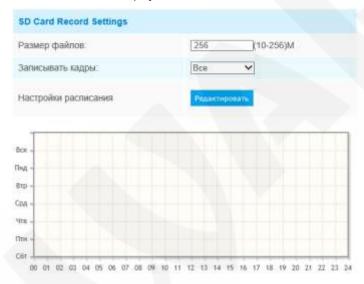
Позволяет настроить хранение файлов на SD-карте


Пожалуйста, вставьте SD-карту

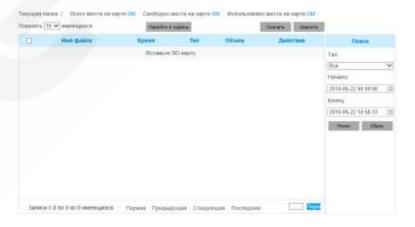
Параметр	Описание
Формат	Форматирование SD-карты. Все файлы с нее будут удалены
Mount	Смонтировать/размонтировать SD-карту
Включить автоматическую очистку диска	Включение/выключение автоматической очистки
Удалить	Когда свободное место достигает указанного значения – будет удален выбранный процент старых записей.

NAS.

Позволяет настроить хранение файлов на NAS.



Параметр	Описание
Адрес сервера	IP адрес сервера NAS
Путь к файлам	Введите путь к файлам NAS
Тип ФС	Доступны NFS и SMB/CIFS


Расписание записи.

Настройка расписания записей на SD-карту и NAS.

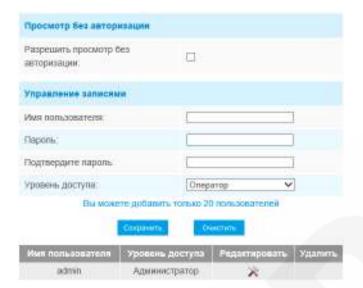
Обзор SD карты.

Данное меню позволяет просмотреть файлы записанные на SD-карту.

Снимок.

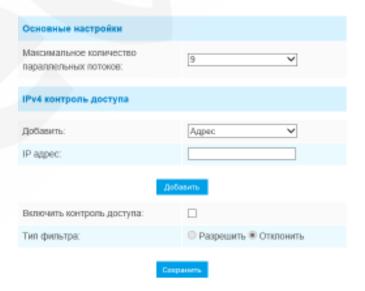
Данное меню позволяет настроить выполнение снимков по расписанию.

Параметр	Описание
Настройки снимков	Включить снимки по расписанию: Активация функции снимков по расписанию; Интервал: Настройка интервала снимков, Сохранить на SD Карту: Сохранение снимков на SD-карту и выбор варианта составления имени файла; Сохранить на NAS: Сохранение снимков на NAS и выбор варианта составления имени файла; Закачать на FTP: Закачать снимки на FTP; Отправить по SMTP: отправка снимков по SMTP.
Настройки расписания	Нажмите кнопку Редактировать для настройки расписания записи.


8.3 Безопасность.

Настройка параметров безопасности камеры. Доступны следующие пункты: Пользователь, Список Доступа, Шифрование сеансов.

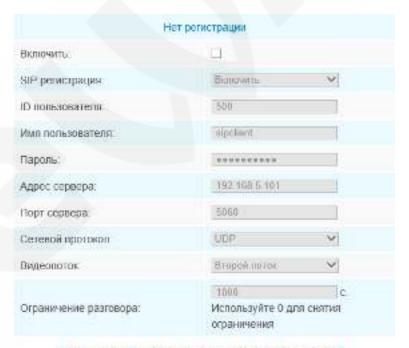
Пользователь.


Данная настройка позволяет настроить различных пользователей для управления камерой.

Параметр	Описание
Просмотр без авторизации	Активируйте, чтоб разрешить просмотр видео пользователям без аккаунта.
Управление записями	Имя пользователя: Введите имя пользователя для создания аккаунта; Пароль: Введите пароль для аккаунта; Подтвердите пароль: Подтверждение заданного пароля; Уровень доступа: Задайте уровень доступа аккаунта.
Оператор	Оператор может управлять всеми страницами кроме страниц пользователей.
Наблюдатель	Наблюдатель не может менять настройки

Список доступа.

Параметр	Описание
Основные настройки	Максимальное количество параллельных потоков: Доступно от 1 до 9 потоков.
IPv4 контроль доступа	Добавить: Доступны Адрес, Сеть и Диапазон IP адрес: Ввод адреса, маски сети или диапазона адресов.
Включить контроль доступа	Включение разрешения или запрещения доступа с указанных адресов.
Тип фильтра	Разрешение или запрет доступа


Шифрование сеансов.

Включение/выключения SSH для шифрования сеансов

8.4 SIP.

Протокол инициации сеанса (SIP) является сигнальным протоколом связи, широко используемым для управления сеансами мультимедийной связи, такими как голосовые и видеозвонки через сети Интернет (IP). Данное меню позволяет настраивать параметры, связанные с SIP.

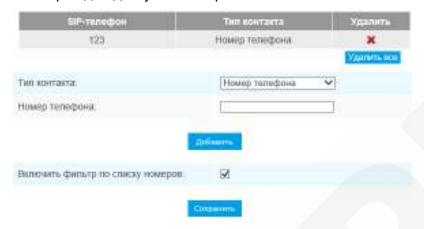
Настройки SIP.

Примечание.SIP также поддерживает прямой вызов на IP.

Параметр	Описание	
Нет регистрации/ зарегистрировано	Статус регистрации SIP	
Включить	Начать или закончить использование SIP	
SIP регистрация	Режим Включить необходим для использования SIP с зарегистрированным аккаунтом. Режим Отключить позволяет использовать SIP без регистрации аккаунта, используя только IP-адрес для вызова.	
ID пользователя	SIP ID	
Имя пользователя	Имя аккаунта SIP	
Пароль	Пароль аккаунта SIP	
Адрес сервера	IP-адрес сервера	
Порт сервера	Порт сервера	
Сетевой протокол	UDP/TCP	
Видеопоток	Выбор видеопотока	
Ограничение разговора	Максимальная длительность звонка при использовании SIP	

Список вызовов.

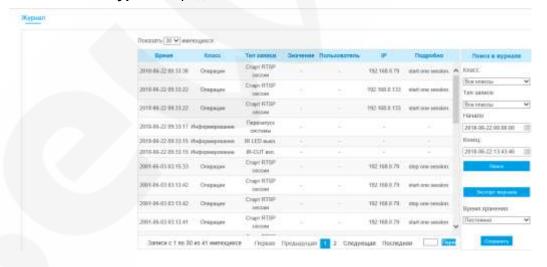
Тип контакта:	Номер телефона
До Номер абонента:	
Заметка:	
Время работы:	С 00 ✔ : 00 ✔ До 24 ✔ : 00 ✔


Добавить

Параметры	Описание
Тип контакта	Номер телефона (Вызов по номеру телефона) и Прямой вызов на IP(P2P IP вызов).
Д о Номер абонента	Вызов тел.номера или IP-адрес.
Заметка	Заметка
Время работы	Расписание использования SIP.

Белый список.

Список доверенных номеров для доступа к камере


8.5 Smart Event.

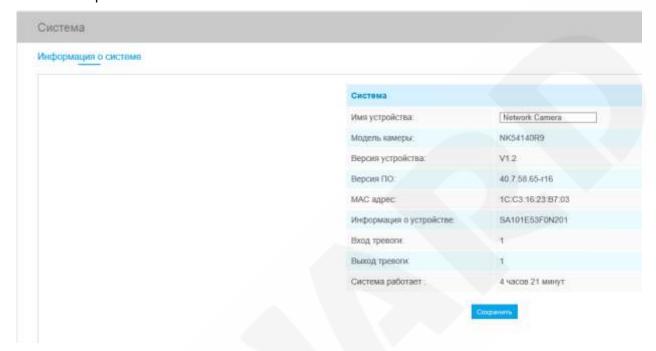
Данный пункт меню позволяет настроить различные виды видео аналитики. Доступны такие типы аналитики как: Вход в зону, Покидание зоны, Расширенная детекция движения, Антисаботаж, Пересечение линии, Пребывание, Детекция людей, Подсчет людей.

Настройки всех типов аналитики аналогичны настройкам детекции движения описанным выше.

8.6 Журнал.

Страница «Системный журнал» представлена ниже.

В системном журнале фиксируются изменения настроек камеры и произошедшие события. Системный журнал начинает заполняться автоматически после включения устройства. В данном меню для поиска записей пользователю доступны следующие настройки:



Параметр	Описание
Класс	Для сортировки доступны 5 основных вариантов отображения: Все классы, События, Операции, Информирование, Оповещения.
Тип записи	Выбор отображения списка по типу записи в зависимости от выбранного класса.
Начало	Начальное время поиска записей
Конец	Конечное время поиска записей
Экспорт	Экспорт записей
Время хранения	Выбор времени хранения журнала. К выбору доступны 8 вариантов: Постоянно и 30/60/120/180/240/300/360 Дней.

Глава 9. Система

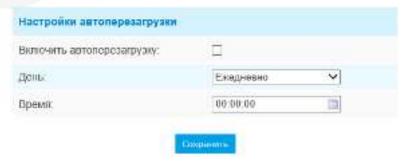
На данной странице отображается вся информация об аппаратном и программном обеспечении камеры.


Глава 10. Обслуживание

На вкладке меню "Обслуживание" вы может обновить прошивку камеры, сбросить камеру к заводским установкам и назначить автоматическую перезагрузку камере.

Доступны следующие вкладки: Обслуживание и Автоперезагрузка.

10.1 Обслуживание.


Страница настроек Обслуживания представлена ниже.

На этой странице можно увидеть версию аппаратного обеспечения, версию прошивки, обновить прошивку, перезагрузить устройство, осуществить сброс к заводским настройкам, а также экспортировать/импортировать файл конфигурации.

10.2 Автоперезагрузка.

Данный пункт позволяет настроить расписание для автоматической перезагрузки камеры. Страница настроек представлена ниже.

Приложения

Приложение А. Заводские установки

Ниже приведены некоторые значения заводских установок.

Наименование	Значение
ІР-адрес	192.168.0.99
Маска подсети	255.255.255.0
Имя пользователя (администратора)	admin
Пароль (администратора)	admin
НТТР-порт	80
DHCP	Включено

Приложение В. Гарантийные обязательства

В1. Общие сведения

- а) Перед подключением оборудования необходимо ознакомиться с Руководством по эксплуатации.
- б) Условия эксплуатации всего оборудования должны соответствовать ГОСТ 15150-69, ГОСТ В20.39.304-76 (в зависимости от исполнения устройства).
- в) Для повышения надежности работы оборудования, защиты от бросков в питающей сети и обеспечения бесперебойного питания следует использовать сетевые фильтры и устройства бесперебойного питания.

В2. Электромагнитная совместимость

Это оборудование соответствует требованиям электромагнитной совместимости EN 55022, EN 50082-1. Напряжение радиопомех, создаваемых аппаратурой, соответствует ГОСТ 30428-96.

В3. Электропитание

Должно соответствовать параметрам, указанным в Руководстве по эксплуатации для конкретного устройства. Для устройств со встроенным источником питания – это переменное напряжение 220 В $\pm 10\%$, частотой 50 Гц $\pm 3\%$. Для устройств с внешним адаптером питания – стабилизированный источник питания 5 В $\pm 5\%$ или 12 В $\pm 10\%$ для устройств с 12-вольтовым питанием. Напряжение пульсаций – не более 0.1 В.

В4. Заземление

Все устройства, имеющие встроенный блок питания, должны быть заземлены путем подключения к специальным розеткам электропитания с заземлением или путем непосредственного заземления корпуса, если на нем предусмотрены специальные крепежные элементы. Заземление электропроводки здания должно быть выполнено в соответствии с требованиями ПУЭ (Правила Устройства Электроустановок). Оборудование с выносными блоками питания и адаптерами также должно быть заземлено, если это предусмотрено конструкцией корпуса или вилки на шнуре питания. Монтаж воздушных линий электропередачи и линий, прокладываемых по наружным стенам зданий и на чердаках, должен быть выполнен экранированным кабелем (или в металлорукаве), и линии должны быть заземлены с двух концов. Причем, если один конец экрана подключается непосредственно к шине заземления, то второй – подключается к заземлению через разрядник.

В5. Молниезащита

Молниезащита должна соответствовать РД 34.21.122-87 "Инструкция по устройству молниезащиты зданий и сооружений" и ГОСТ Р 50571.18-2000, ГОСТ Р 50571.19-2000. При прокладке воздушных линий и линий, идущих по наружной стене зданий и по чердачным помещениям, на входах оборудования должны быть установлены устройства молниезащиты.

В6. Температура и влажность

Максимальные и минимальные значения температуры эксплуатации и хранения, а также влажности, Вы можете посмотреть в техническом описании конкретного оборудования. Максимальная рабочая температура — это температура, выше которой не должен нагреваться корпус устройства в процессе длительной работы.

В7. Размещение

Для вентиляции устройства необходимо оставить как минимум по 5 см свободного пространства по бокам и со стороны задней панели устройства. При установке в телекоммуникационный шкаф или стойку должна быть обеспечена необходимая вентиляция. Для этого рекомендуется устанавливать в шкафу специальный блок вентиляторов. Температура окружающего воздуха и вентиляция должны обеспечивать необходимый температурный режим оборудования (в соответствии с техническими характеристиками конкретного оборудования).

Место для размещения оборудования должно отвечать следующим требованиям:

- а) Отсутствие запыленности помещения.
- б) Отсутствие в воздухе паров влаги, агрессивных сред.
- в) В помещении, где устанавливается оборудование, не должно быть бытовых насекомых.
- г) Запрещается размещать на оборудовании посторонние предметы и перекрывать вентиляционные отверстия.

В8. Обслуживание

Оборудование необходимо обслуживать с периодичностью не менее одного раза в год с целью удаления из него пыли. Это позволит оборудованию работать без сбоев в течение продолжительного времени.

В9. Подключение интерфейсов

Оборудование должно подключаться в строгом соответствии с назначением и типом установленных интерфейсов.

В10. Гарантийные обязательства

ООО «НПП «Бевард» не гарантирует, что оборудование будет работать должным образом в различных конфигурациях и областях применения, и не дает никакой гарантии, что оборудование обязательно будет работать в соответствии с ожиданиями клиента при его применении в специфических целях.

ООО «НПП «Бевард» не несет ответственности по гарантийным обязательствам при повреждении внешних интерфейсов оборудования (сетевых, телефонных, консольных и т.п.) и самого оборудования, возникшем в результате:

- а) несоблюдения правил транспортировки и условий хранения;
- б) форс-мажорных обстоятельств (таких как пожар, наводнение, землетрясение и др.);
- в) нарушения технических требований по размещению, подключению и эксплуатации;
- г) неправильных действий при перепрошивке;
- д) использования не по назначению;
- е) механических, термических, химических и иных видов воздействий, если их параметры выходят за рамки допустимых эксплуатационных характеристик, либо не предусмотрены технической спецификацией на данное оборудование;
 - ж) воздействия высокого напряжения (удар молнии, статическое электричество и т.п.).

Приложение С. Права и поддержка

С1. Торговая марка

Copyright © BEWARD 2018.

Некоторые пункты настоящего Руководства, а также разделы меню управления оборудования могут быть изменены без предварительного уведомления.

BEWARD является зарегистрированной торговой маркой ООО «НПП «Бевард». Все остальные торговые марки принадлежат их владельцам.

С2. Ограничение ответственности

ООО «НПП «Бевард» не гарантирует, что аппаратные средства будут работать должным образом во всех средах и приложениях, и не дает гарантий и представлений, подразумеваемых или выраженных относительно качества, рабочих характеристик, или работоспособности при использовании в специфических целях. ООО «НПП «Бевард» приложило все усилия, чтобы сделать это Руководство по эксплуатации наиболее точным и полным. ООО «НПП «Бевард» отказывается от ответственности за любые опечатки или пропуски, которые, возможно, произошли при написании данного Руководства.

Информация в любой части Руководства по эксплуатации изменяется и дополняется ООО «НПП «Бевард» без предварительного уведомления. ООО «НПП «Бевард» не берет на себя никакой ответственности за любые погрешности, которые могут содержаться в этом Руководстве. ООО «НПП «Бевард» не берет на себя ответственности и не дает гарантий в выпуске обновлений или сохранении неизменной какой-либо информации в настоящем Руководстве по эксплуатации, и оставляет за собой право вносить изменения в данное Руководство и/или в изделия, описанные в нем, в любое время без предварительного уведомления. Если Вы обнаружите в этом Руководстве информацию, которая является неправильной или неполной, или вводит в заблуждение, мы будем Вам крайне признательны за Ваши комментарии и предложения.

С3. Предупреждения FCC

Это оборудование было протестировано и признано удовлетворяющим требованиям положения о цифровых устройствах, принадлежащих к классу A, части 15 Правил Федеральной комиссии по связи (FCC). Эти ограничения были разработаны в целях обеспечения защиты от вредных помех, которые могут возникать при использовании оборудования в коммерческих целях. Это оборудование может излучать, генерировать и использовать энергию в радиочастотном диапазоне. Если данное оборудование будет установлено и/или будет использоваться с отклонениями от настоящего Руководства, оно может оказывать вредное воздействие на качество радиосвязи, а при установке в жилой зоне, возможно, — на здоровье

людей. В этом случае владелец будет обязан исправлять последствия вредного воздействия за свой счет.

С4. Предупреждение СЕ

Это устройство может вызывать радиопомехи во внешнем окружении. В этом случае пользователь может быть обязан принять соответствующие меры.

С5. Поддержка

Для информации относительно сервиса и поддержки, пожалуйста, свяжитесь с сервисным центром ООО «НПП «Бевард». Контактные данные Вы можете найти на сайте http://www.beward.ru/.

Перед обращением в службу технической поддержки, пожалуйста, подготовьте следующую информацию:

- Точное наименование и IP-адрес Вашего оборудования (в случае приобретения IPоборудования), дата покупки.
- Сообщения об ошибках, которые появлялись с момента возникновения проблемы.
- Версия прошивки и через какое оборудование работало устройство, когда возникла проблема.
- Произведенные Вами действия (по шагам), предпринятые для самостоятельного решения проблемы.
- Скриншоты настроек и параметры подключения.

Чем полнее будет представленная Вами информация, тем быстрее наши специалисты смогут помочь Вам решить проблему.

Приложение D. Глоссарий

3GP — мультимедийный контейнер, определяемый Партнёрским Проектом Третьего поколения (Third Generation Partnership Project (3GPP) для мультимедийных служб 3G UMTS. Многие современные мобильные телефоны имеют функции записи и просмотра аудио и видео в формате 3GP.

ActiveX – это стандарт, который разрешает компонентам программного обеспечения взаимодействовать в сетевой среде независимо от языка(-ов), используемого для их создания. Веб-браузеры могут управлять элементами управления ActiveX, документами ActiveX и сценариями ActiveX. Элементы управления ActiveX часто загружаются и инсталлируются автоматически, как запрашиваемы. Сама по себе данная технология не является кроссплатформенной и поддерживается в полном объеме только в среде Windows в браузере Internet Explorer 8.0.

ADSL (Asymmetric Digital Subscriber Line / Асимметричная цифровая абонентская линия) — модемная технология, превращающая аналоговые сигналы, передаваемые посредством стандартной телефонной линии, в цифровые сигналы (пакеты данных), позволяя во время работы совершать звонки.

Angle / Угол обзора — это угол, который образуют лучи, соединяющие заднюю точку объектива и диагональ кадра. Угол зрения показывает съемочное расстояние и чаще всего выражается в градусах. Обычно угол зрения измеряется на линзе, фокус которой установлен в бесконечность. В зависимости от угла зрения, объективы делят на три типа: широкоугольные, нормальные и длиннофокусные. В широкоугольных объективах, которые чаще всего используются для панорамного наблюдения, угол зрения составляет 75 градусов и больше. Нормальные объективы имеют угол зрения от 45 до 65 градусов. Угол зрения длиннофокусного объектива составляет 30 градусов.

ARP (Address Resolution Protocol / Протокол определения адреса) — использующийся в компьютерных сетях протокол низкого уровня, предназначенный для определения адреса канального уровня по известному адресу сетевого уровня. Наибольшее распространение этот протокол получил благодаря повсеместности сетей IP, построенных поверх Ethernet. Этот протокол используется для связи IP-адреса с MAC-адресом устройства. По локальной сети транслируется запрос для поиска узла с MAC-адресом, соответствующим IP-адресу.

Aspect ratio / **Формат экрана** — это форматное отношение ширины к высоте кадров. Общий формат кадра, используемый для телевизионных экранов и компьютерных мониторов, составляет 4:3. Телевидение высокой четкости (HDTV) использует формат кадра 16:9.

Authentication / Аутентификация – проверка принадлежности субъекту доступа предъявленного им идентификатора; подтверждение подлинности. Один из способов

аутентификации в компьютерной системе состоит во вводе вашего пользовательского идентификатора, в просторечии называемого «логином» (login — регистрационное имя пользователя) и пароля — некой конфиденциальной информации, знание которой обеспечивает владение определенным ресурсом. Получив введенный пользователем логин и пароль, компьютер сравнивает их со значением, которое хранится в специальной базе данных, и, в случае совпадения, пропускает пользователя в систему.

Auto Iris / АРД (Авторегулируемая диафрагма) – это автоматическое регулирование величины диафрагмы для контроля количества света, попадающего на матрицу. Существует два варианта автоматической регулировки диафрагмы: Direct Drive и Video Drive.

Biterate / **Битрейт (Скорость передачи данных)** — буквально, скорость прохождения битов информации. Битрейт принято использовать при измерении эффективной скорости передачи информации по каналу, то есть скорости передачи «полезной информации» (помимо таковой, по каналу может передаваться служебная информация).

BLC (Back Light Compensation / Компенсация фоновой засветки, компенсация заднего света). Типичный пример необходимости использования: человек на фоне окна. Электронный затвор камеры отрабатывает интегральную, т.е. общую освещенность сцены, «видимой» камерой через объектив. Соответственно, малая фигура человека на большом светлом фоне окна выльется в итоге "засветкой" всей картинки. Включение функции «BLC» может в подобных случаях исправить работу автоматики камеры.

Bonjour – протокол автоматического обнаружения сервисов (служб), используемый в операционной системе Mac OS X, начиная с версии 10.2. Служба Bonjour предназначается для использования в локальных сетях и использует сведения (записи) в службе доменных имён (DNS) для обнаружения других компьютеров, равно как и иных сетевых устройств (например, принтеров) в ближайшем сетевом окружении.

CIDR / **Бесклассовая адресация** (англ. *Classless Inter-Domain Routing*, англ. *CIDR*) – метод IP-адресации, позволяющий гибко управлять пространством IP-адресов, не используя жёсткие рамки классовой адресации. Использование этого метода позволяет экономно использовать ограниченный ресурс IP-адресов, поскольку возможно применение различных масок подсетей к различным подсетям.

ССD / **П3С-матрица** — это светочувствительный элемент, использующийся во многих цифровых камерах и представляющий собой крупную интегральную схему, состоящую из сотен тысяч зарядов (пикселей), которые преобразуют световую энергию в электронные сигналы. Размер матрицы может составлять 1/4", 1/3", 1/2" или 2/3".

СGI (Единый шлюзовый интерфейс) – спецификация, определяющая взаимодействие web-сервера с другими CGI-программами. Например, HTML-страница, содержащая форму, может использовать CGI-программу для обработки данных формы.

СМОЅ / КМОП (Complementary Metal Oxide Semiconductor / Комплементарный металлооксидный полупроводник) — это широко используемый тип полупроводника, который использует как отрицательную, так и положительную электрическую цепь. Поскольку только одна из этих типов цепей может быть включена в любое данное время, то микросхемы КМОПа потребляют меньше электроэнергии, чем микросхемы, использующие только один тип транзистора. Также датчики изображения КМОП в некоторых микросхемах содержат схемы обработки, однако это преимущество невозможно использовать с ПЗС-датчиками, которые являются также более дорогими в производстве.

DDNS (Dynamic Domain Name System, DynDNS) — технология, применяемая для назначения постоянного доменного имени устройству (компьютеру, сетевому накопителю) с динамическим IP-адресом. Это может быть IP-адрес, полученный по DHCP или по IPCP в PPРсоединениях (например, при удалённом доступе через модем). Другие машины в Интернете могут устанавливать соединение с этой машиной по доменному имени.

DHCP (Dynamic Host Configuration Protocol / Протокол динамической конфигурации узла) — это сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP. Данный протокол работает по модели «клиент-сервер». Для автоматической конфигурации компьютер-клиент на этапе конфигурации сетевого устройства обращается к так называемому серверу DHCP и получает от него нужные параметры.

DHCP-сервер – это программа, которая назначает клиентам IP-адреса внутри заданного диапазона на определенный период времени. Данную функцию поддерживают практически все современные маршрутизаторы.

Digital Zoom / Цифровое увеличение – это увеличение размера кадра не за счет оптики, а с помощью кадрирования полученного с матрицы изображения. Камера ничего не увеличивает, а только вырезает нужную часть изображения и растягивает ее до первоначального разрешения.

Domain Server / **Сервер доменных имен** — также домены могут быть использованы организациями, которые хотят централизованно управлять своими компьютерами (на которых установлены операционные системы Windows). Каждый пользователь в рамках домена получает учетную запись, которая обычно разрешает зарегистрироваться и использовать любой компьютер в домене, хотя одновременно на компьютер могут быть наложены ограничения. Сервером доменных имен является сервер, который аутентифицирует пользователей в сети.

Ethernet – пакетная технология передачи данных преимущественно в локальных компьютерных сетях. Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде – на канальном уровне модели OSI.

Factory default settings / Заводские установки по умолчанию – это установки, которые изначально использованы для устройства, когда оно отгружается с завода в первый раз. Если возникнет необходимость переустановить устройство до его заводских установок по умолчанию, то эта функция применима для большинства устройств, и она полностью переустанавливает любые установки, которые были изменены пользователем.

Firewall / Брандмауэр – брандмауэр (межсетевой экран) работает как барьер между сетями, например, между локальной сетью и Интернетом. Брандмауэр гарантирует, что только зарегистрированным пользователям будет разрешен доступ из одной сети в другую сеть. Брандмауэром может быть программное обеспечение, работающее на компьютере, или брандмауэром может быть автономное аппаратное устройство.

Focal length / Фокусное расстояние – измеряемое в миллиметрах фокусное расстояние объектива камеры, определяющее ширину горизонтальной зоны обзора, которое в свою очередь измеряется в градусах. Определяется как расстояние от передней главной точки до переднего фокуса (для переднего фокусного расстояния) и как расстояние от задней главной точки до заднего фокуса (для заднего фокусного расстояния). При этом, под главными точками подразумеваются точки пересечения передней (задней) главной плоскости с оптической осью.

Fps / Кадровая частота – количество кадров, которое видеосистема (компьютерная игра, телевизор, DVD-плеер, видеофайл) выдаёт в секунду.

Frame / Кадр — кадром является полное видеоизображение. В формате 2:1 чересстрочной развёртки интерфейса RS-170 и в форматах Международного консультативного комитета по радиовещанию, кадр создается из двух отдельных областей линий чересстрочной развёртки 262.5 или 312.5 на частоте 60 или 50 Гц для того, чтобы сформировать полный кадр, который отобразится на экране на частоте 30 или 25 Гц. В видеокамерах с прогрессивной разверткой каждый кадр сканируется построчно и не является чересстрочным; большинство из них отображается на частоте 30 и 25 Гц.

FTP (File Transfer Protocol / Протокол передачи файлов) — это протокол приложения, который использует набор протоколов TCP / IP. Он используется, чтобы обменивается файлами между компьютерами/устройствами в сети. FTP позволяет подключаться к серверам FTP, просматривать содержимое каталогов и загружать файлы с сервера или на сервер. Протокол FTP относится к протоколам прикладного уровня и для передачи данных использует транспортный протокол TCP. Команды и данные, в отличие от большинства других протоколов

передаются по разным портам. Порт 20, открываемый на стороне сервера, используется для передачи данных, порт 21 - для передачи команд. Порт для приема данных клиентом определяется в диалоге согласования.

Full-duplex / Полный дуплекс – полный дуплекс представляет собой передачу данных одновременно в двух направлениях. В системе звуковоспроизведения это можно описать, например, телефонными системами. Также полудуплексная связь обеспечивает двухстороннюю связь, но только в одном направлении за один раз.

G.711 – стандарт для представления 8-битной компрессии РСМ (ИКМ) сигнала с частотой дискретизации 8000 кадров/секунду и 8 бит/кадр. Таким образом, G.711 кодек создаёт поток 64 Кбит/с.

Gain / **Коэффициент усиления** — коэффициентом усиления является коэффициент усиления и экстента, в котором аналоговый усилитель усиливает силу сигнала. Коэффициенты усиления обычно выражаются в единицах мощности. Децибел (дБ) является наиболее употребительным способом для измерения усиления усилителя.

Gateway / Межсетевой шлюз – межсетевым шлюзом является сеть, которая действует в качестве точки входа в другую сеть. Например, в корпоративной сети, сервер компьютера, действующий в качестве межсетевого шлюза, зачастую также действует и в качестве проксисервера и сервера сетевой защиты. Межсетевой шлюз часто связан как с маршрутизатором, который распознает, куда направлять пакет данных, который приходит в межсетевой шлюз, так и коммутатором, который предоставляет истинный маршрут в и из межсетевого шлюза для данного пакета.

H.264 — это международный стандарт кодирования аудио и видео, (другое название 'MPEG-4 part 10' или AVC (Advanced Video Coding)). Данный стандарт содержит ряд новых возможностей, позволяющих значительно повысить эффективность сжатия видео по сравнению с более ранними стандартами (MPEG-1, MPEG-2 и MPEG-4), обеспечивая также большую гибкость применения в разнообразных сетевых средах. Используется в цифровом телевидении высокого разрешения (HDTV) и во многих других областях цифрового видео.

HTTP (Hypertext Transfer Protocol / Протокол передачи гипертекста) — это набор правил по обмену файлами (текстовыми, графическими, звуковыми, видео- и другими мультимедиа файлами) в сети. Протокол HTTP является протоколом высшего уровня в семействе протоколов TCP/IP. В данном протоколе любой пакет передается до получения подтверждения о его правильном приеме.

HTTPS (Hypertext Transfer Protocol Secure / Защищённый протокол передачи гипертекста) — расширение протокола HTTP, поддерживающее шифрование. Данные,

передаваемые по протоколу HTTP, «упаковываются» в криптографический протокол SSL или TLS, тем самым обеспечивается защита этих данных. В отличие от HTTP, для HTTPS по умолчанию используется TCP-порт 443.

Ниb / **Сетевой концентратор** - сетевой концентратор используется для подключения многочисленных устройств к сети. Сетевой концентратор передает все данные в устройства, подключенные к нему, тогда как коммутатор только передает данные в устройство, которое специально предназначено для него.

ICMP (Internet Control Message Protocol / Межсетевой протокол управляющих сообщений) — сетевой протокол, входящий в стек протоколов TCP/IP. В основном ICMP используется для передачи сообщений об ошибках и других исключительных ситуациях, возникших при передаче данных, например, запрашиваемая услуга недоступна или хост или маршрутизатор не отвечают.

IEEE 802.11 / **Стандарт IEEE 802.11** — это семейство стандартов для беспроводных локальных сетей. Стандарт 802.11 поддерживает передачу данных на скорости 1 или 2 Мбит/сек на полосе 2.4 ГГц. Стандарт же 802.11b задает скорость передачи данных 11 Мбит/сек на полосе 2.4 ГГц, в то время как стандарт 802.11a позволяет задать скорость до 54 Мбит/сек. на полосе 5 ГГц.

Interlaced video / Чересстрочная развертка — это видеозапись со скоростью 50 изображений (называемых полями) в секунду, из которых каждые 2 последовательных поля (полукадра) затем объединяются в 1 кадр. Чересстрочная развертка была разработана много лет назад для аналогового телевидения и до сих пор широко применяется. Она дает хорошие результаты при просмотре движения в стандартном изображении, хотя всегда существует некоторое искажение изображения.

Internet Explorer (IE) – серия браузеров, разрабатываемая корпорацией Microsoft с 1995 года. Входит в комплект операционных систем семейства Windows. Является наиболее широко используемым веб-браузером.

IP 66 (Ingress Protection) – это стандарт защиты оборудования, который описывает пылеи влаго- защиту камеры видеонаблюдения. Первая цифра обозначает уровень защиты от попадания твёрдых частиц (например, цифра 6 обозначает полное исключение попадания пыли). Вторая цифра обозначает уровень защиты от попадания жидкостей (например, цифра 6 обозначает безупречную работу камеры при воздействии массивных водяных потоков воды или временном обливании.)

IP-камера – цифровая видеокамера, особенностью которой является передача видеопотока в цифровом формате по сети Ethernet, использующей протокол IP.

JPEG (Joint Photographic Experts Group / Стандарт Объединенной группы экспертов в области фотографии) — один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. При создании изображения JPEG имеется возможность настройки используемого коэффициента сжатия. Так как при более низком коэффициенте сжатия (т.е. самом высоком качестве) увеличивается объем файла, существует выбор между качеством изображения и объемом файла.

Kbit/s (Kilobits per second / Кбит/сек) – это мера измерения скорости потока данных, т.е. это скорость, на которой определенное количество битов проходят заданную точку.

LAN (Local Area Network / Локальная вычислительная сеть) – компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт), то есть определенную географическую зону.

Lux / Люкс – единица измерения освещенности. Определяется как освещенность поверхности площадью 1 кв.м. световым потоком 1 люмен. Используется для обозначения чувствительности камер.

MAC-adpec (Media Access Control address / Аппаратный адрес устройства) – это уникальный идентификатор присоединенного к сети устройства или, точнее, его интерфейс для подключения к сети.

Mbit/s (Megabits per second / Mбит/сек) — это мера измерения скорости потока данных, т.е. это скорость, на которой биты проходят заданную точку. Этот параметр обычно используется, чтобы представить «скорость» сети. Локальная сеть должна работать на скорости 10 или 100 Мбит/сек.

MJPEG (Motion JPEG) – покадровый метод видеосжатия, основной особенностью которого является сжатие каждого отдельного кадра видеопотока с помощью алгоритма сжатия изображений JPEG. При сжатии методом MJPEG межкадровая разница не учитывается.

MPEG-4 – это международный стандарт, используемый преимущественно для сжатия цифрового аудио и видео. Стандарт MPEG-4 в основном используется для вещания (потоковое видео), записи фильмов на компакт-диски, видеотелефонии (видеотелефон) и широковещания, в которых активно используется сжатие цифровых видео и звука.

Multicast / Групповая передача — специальная форма широковещания, при которой копии пакетов направляются определённому подмножеству адресатов. Наряду с приложениями, устанавливающими связь между источником и одним получателем, существуют такие приложения, где требуется, чтобы источник посылал информацию сразу группе получателей. При традиционной технологии IP-адресации требуется каждому получателю информации послать свой пакет данных, то есть одна и та же информация передается много раз. Технология

групповой адресации представляет собой расширение IP-адресации, позволяющее направить одну копию пакета сразу всем получателям. Множество получателей определяется принадлежностью каждого из них к конкретной группе. Рассылку для конкретной группы получают только члены этой группы.

Технология IP Multicast предоставляет ряд существенных преимуществ по сравнению с традиционным подходом. Например, добавление новых пользователей не влечет за собой необходимое увеличение пропускной способности сети. Значительно сокращается нагрузка на посылающий сервер, который больше не должен поддерживать множество двухсторонних соединений.

Для реализации групповой адресации в локальной сети необходимы: поддержка групповой адресации стеком протокола TCP/IP, программная поддержка протокола IGMP для отправки запроса о присоединении к группе и получении группового трафика, поддержка групповой адресации сетевой картой, приложение, использующее групповую адресацию, например, видеоконференция. Технология «мультикаст» использует адреса с 224.0.0.0 до 239.255.255.255. Поддерживается статическая и динамическая адресация. Примером статических адресов являются 224.0.0.1 – адрес группы, включающей в себя все узлы локальной сети, 224.0.0.2 – все маршрутизаторы локальной сети. Диапазон адресов с 224.0.0.0 по 224.0.0.255 зарезервирован для протоколов маршрутизации и других низкоуровневых протоколов поддержки групповой адресации. Остальные адреса динамически используются приложениями. На сегодняшний день большинство маршрутизаторов поддерживают эту опцию (в меню обычно есть опция, разрешающая IGMP протокол или мультикаст).

NTP (Network Time Protocol / Протокол синхронизации времени) — сетевой протокол для синхронизации времени с использованием сетей. NTP использует для своей работы протокол UDP.

NTSC (National Television System Committee / Стандарт NTSC) — стандарт NTSC является телевизионным и видеостандартом в США. Стандарт NTSC доставляет 525 строк в кадре на 30 к/сек.

ONVIF (Open Network Video Interface Forum) — отраслевой стандарт, определяющий протоколы взаимодействия таких устройств, как IP-камеры, видеорегистраторы и системы управления видео. Международный форум, создавший данный стандарт, основан компаниями Axis Communications, Bosch Security Systems и Sony в 2008 году с целью разработки и распространения открытого стандарта для систем сетевого видеонаблюдения.

PAL (Phase Alternating Line / Телевизионный стандарт PAL) – телевизионный стандарт PAL является преобладающим телевизионным стандартом в странах Европы. Телевизионный стандарт PAL доставляет 625 строк в кадре на 25 к/сек.

PoE (**Power over Ethernet** / **Питание через Ethernet**) — технология, позволяющая передавать удалённому устройству вместе с данными электрическую энергию через стандартную витую пару в сети Ethernet.

Port / Порт – идентифицируемый номером системный ресурс, выделяемый приложению, выполняемому на некотором сетевом хосте, для связи с приложениями, выполняемыми на других сетевых хостах (в том числе с другими приложениями на этом же хосте). В обычной клиент-серверной модели приложение либо ожидает входящих данных или запроса на соединение («слушает порт»), либо посылает данные или запрос на соединение на известный порт, открытый приложением-сервером.

РРР (Протокол двухточечного соединения) — протокол, позволяющий использовать интерфейс последовательной передачи для связи между двумя сетевыми устройствами. Например, подключение ПК к серверу посредством телефонной линии.

РРРоЕ (Point-to-Point Protocol / Протокол соединения «точка - точка») – протокол для подключения пользователей сети стандарта Ethernet к Интернету через широкополосное соединение, такое как линия DSL, беспроводное устройство или кабельный модем. С помощью РРРоЕ и широкополосного модема пользователи локальной сети могут получать доступ с индивидуальной проверкой подлинности к высокоскоростным сетям данных. Объединяя Ethernet и протокол РРР (Point-to-Point Protocol), протокол РРРоЕ обеспечивает эффективный способ создания отдельных соединений с удаленным сервером для каждого пользователя.

Progressive scan / Прогрессивное сканирование — это технология представления кадров в видеонаблюдении, при которой каждый кадр воспроизводится по одной линии в порядке их размещения каждую шестнадцатую долю секунды. То есть сначала показывается линия 1, затем 2, затем 3 и так далее. Таким образом, изображение не бьется на отдельные полукадры. В этом случае полностью исчезает эффект мерцания, поэтому качество отснятого видео получается более высоким.

RJ45 — унифицированный разъём, используемый в телекоммуникациях, имеет 8 контактов. Используется для создания ЛВС с использованием 4-парных кабелей витой пары.

Router / Маршрутизатор – это устройство, которое определяет точку ближайшей сети, в которую пакет данных должен быть направлен как в свой окончательный пункт назначения. Маршрутизатор создает и/или поддерживает специальную таблицу маршрутизации, которая сохраняет информацию, как только она достигает определенных пунктов назначения. Иногда маршрутизатор включен в качестве части сетевого коммутатора.

RTP (Real-Time Transport Protocol / Транспортный протокол в режиме реального времени) — это протокол IP для передачи данных (например, аудио или видео) в режиме

реального времени. Протокол RTP переносит в своём заголовке данные, необходимые для восстановления голоса или видеоизображения в приёмном узле, а также данные о типе кодирования информации (JPEG, MPEG и т. п.). В заголовке данного протокола, в частности, передаются временная метка и номер пакета. Эти параметры позволяют при минимальных задержках определить порядок и момент декодирования каждого пакета, а также интерполировать потерянные пакеты. В качестве нижележащего протокола транспортного уровня, как правило, используется протокол UDP.

RTSP (Real Time Streaming Protocol / Протокол передачи потоков в режиме реального времени) — это протокол управления, который служит основой для согласования транспортных протоколов, таких как RTP, многоадресной или одноадресной передачи и для согласования используемых кодеков. RTSP можно рассматривать как пульт дистанционного управления потоками данных, предоставляемыми сервером мультимедиа. Серверы RTSP обычно используют RTP в качестве стандартного протокола для передачи аудио- и видеоданных.

SD (Secure Digital Memory Card/ карта памяти типа SD) — формат карты флэш-памяти, разработанный для использования в основном в портативных устройствах. На сегодняшний день широко используется в цифровых устройствах, например: в фотоаппаратах, мобильных телефонах, КПК, коммуникаторах и смартфонах, GPS-навигаторах, видеокамерах и в некоторых игровых приставках.

Shutter / Электронный затвор – это элемент матрицы, который позволяет регулировать время накопления электрического заряда. Эта деталь отвечает за длительность выдержки и количество света, попавшего на матрицу перед формированием изображения.

SMTP (Simple Mail Transfer Protocol / Простой протокол передачи почты) — протокол SMTP используется для отсылки и получения электронной почты. Однако поскольку он является «простым» по своей структуре, то он ограничен в своей возможности по вместимости сообщений на получающем конце, и он обычно используется с одним из двух других протоколов, POP3 или протоколом интерактивного доступа к электронной почте (протокол IMAP). Эти протоколы позволяют пользователю сохранять сообщения в почтовом ящике сервера и периодически загружать их из сервера.

SSL/TSL (Secure Socket Layer / Transport Layer Security / Протокол защищенных сокетов / Протокол транспортного уровня) — эти два протокола (протокол SSL является приемником протокола TSL) являются криптографическими протоколами, которые обеспечивают безопасную связь в сети. В большинстве случаев протокол SSL используется через протокол HTTP, чтобы сформировать протокол защищённой передачи гипертекста (протокол HTTPS) в качестве использованного, например, в Интернете для осуществления

финансовых транзакций в электронном виде. Протокол SSL использует сертификаты открытого криптографического ключа, чтобы подтверждать идентичность сервера.

Subnet mask / Маска подсети – битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая – к адресу самого узла в этой сети. Например, узел с IP-адресом 192.168.0.99 и маской подсети 255.255.255.0 находится в сети 192.168.0.0.

Switch / Коммутатор – коммутатором является сетевое устройство, которое соединяет сегменты сети вместе и которое выбирает маршрут для пересылки устройством данных к его ближайшему получателю. Обычно коммутатор является более простым и более быстрым механизмом, чем сетевой маршрутизатор. Некоторые коммутаторы имеют функцию маршрутизатора.

TCP (Transmission Control Protocol / Протокол управления передачей) — один из основных сетевых протоколов Интернета, предназначенный для управления передачей данных в сетях и подсетях TCP/IP. TCP - это транспортный механизм, предоставляющий поток данных с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета (см. также T/TCP).

TTL (**Time to live**) – предельный период времени или число итераций или переходов, за который набор данных (пакет) может существовать до своего исчезновения. Значение TTL может рассматриваться как верхняя граница времени существования IP-дейтаграммы в сети. Поле TTL устанавливается отправителем дейтаграммы и уменьшается каждым узлом (например, маршрутизатором) на пути его следования, в соответствии со временем пребывания в данном устройстве или согласно протоколу обработки. Если поле TTL становится равным нулю до того, как дейтаграмма прибудет в пункт назначения, то такая дейтаграмма отбрасывается и отправителю отсылается ICMP-пакет с кодом 11 – «Превышение временного интервала».

UDP (User Datagram Protocol / Протокол дейтаграмм пользователя) — это протокол обмена данными с ограничениями на пересылаемые данные по сети, использующей протокол IP. Протокол UDP является альтернативой протоколу TCP. Преимущество протокола UDP состоит в том, что для него необязательна доставка всех данных и некоторые пакеты могут быть пропущены, если сеть перегружена. Это особенно удобно при передаче видеоматериалов в режиме реального времени, поскольку не имеет смысла повторно передавать устаревшую информацию, которая все равно не будет отображена.

UPnP (**Universal Plug and Play**) – технология, позволяющая персональным компьютерам и интеллектуальным сетевым системам (например, охранному оборудованию, развлекательным устройствам или интернет-шлюзам) соединяться между собой автоматически и работать совместно через единую сеть. Платформа UPnP строится на основе таких интернет-стандартов,

как TCP/IP, HTTP и XML. Технология UPnP поддерживает сетевые инфраструктуры практически любого типа - как проводные, так и беспроводные. В их число, в частности, входят кабельный Ethernet, беспроводные сети Wi-Fi, сети на основе телефонных линий, линий электропитания и пр. Поддержка UPnP реализована в операционных системах Windows.

URL (Uniform Resource Locator / Единый указатель ресурсов) — это стандартизированный способ записи адреса ресурса в сети Интернет.

WAP (Wireless Application Protocol / Беспроводной протокол передачи данных) – протокол, созданный специально для GSM-сетей, где нужно устанавливать связь портативных устройств с сетью Интернет. С помощью WAP пользователь мобильного устройства может загружать из сети Интернет любые цифровые данные.

Web-server / Веб-сервер – это сервер, принимающий HTTP-запросы от клиентов, обычно веб-браузеров, и выдающий им HTTP-ответы, обычно вместе с HTML-страницей, изображением, файлом, медиа-потоком или другими данными.

Wi-Fi (Wireless Fidelity, дословно – «беспроводная точность») – торговая марка промышленной группы «Wi-Fi Alliance» для беспроводных сетей на базе стандарта IEEE 802.11. Любое оборудование, соответствующее стандарту IEEE 802.11, может быть протестировано в Wi-Fi Alliance для получения соответствующего сертификата и права нанесения логотипа Wi-Fi.

W-LAN / **Беспроводная LAN** – это беспроводная локальная сеть, использующая в качестве носителя радиоволны: беспроводное подключение к сети конечного пользователя. Для основной сетевой структуры обычно используется кабельное соединение.

WPS (Wi-Fi Protected Setup) — стандарт, предназначенный для полуавтоматического создания беспроводной домашней сети. Протокол призван оказать помощь пользователям, которые не обладают широкими знаниями о безопасности в беспроводных сетях, и как следствие, имеют сложности при осуществлении настроек. WPS автоматически обозначает имя сети и задает шифрование, для защиты от несанкционированного доступа в сеть, при этом нет необходимости вручную задавать все параметры.

Алгоритм сжатия видео — это методика уменьшения размера файла цифровой видеозаписи посредством удаления графических элементов, не воспринимаемых человеческим глазом.

Варифокальный объектив – объектив, позволяющий использовать различные фокусные расстояния в противоположность объективу с фиксированным фокусным расстоянием, который использует лишь одно расстояние.

Витая пара – вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой, покрытых пластиковой оболочкой.

Свивание проводников производится с целью повышения степени связи между собой проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов.

Выдержка – интервал времени, в течение которого свет воздействует на участок светочувствительного материала или светочувствительной матрицы для сообщения ему определённой экспозиции.

Детектор движения – это аппаратный либо программный модуль, основной задачей которого является обнаружение перемещающихся в поле зрения камеры объектов.

Детектор саботажа — это программный модуль, который позволяет обнаруживать такие ситуации, как: расфокусировка, перекрытие или засвечивание изображения, отворот камеры, частичная потеря сигнала. Принцип действия основан на анализе в режиме реального времени изменения контраста локальных областей кадров из видеопотока, получаемого с телекамеры-детектора. Детектор саботажа автоматически выбирает области кадров, по которым необходимо оценивать изменение контрастности во времени и, если изменение контрастности в этих областях превышает некоторый относительный порог, принимает решение о потере «полезного» видеосигнала.

Диафрагма (от греч. diáphragma – перегородка) – это отверстие в объективе камеры, которое регулирует количество света, попадающего на матрицу. Изменение размера диафрагмы позволяет контролировать целый ряд показателей, важных для получения качественного изображения.

Доменное имя – это определенная буквенная последовательность, обозначающая имя сайта или используемая в именах электронных почтовых ящиков. Доменные имена дают возможность адресации интернет-узлов и расположенных на них сетевых ресурсов (веб-сайтов, серверов электронной почты, других служб) в удобной для человека форме.

ИК-подсветка (ИК-прожектор) – устройство, обеспечивающее подсветку объекта наблюдения с излучением в инфракрасном диапазоне.

Камера «день/ночь» – это видеокамера, предназначенная для работы круглосуточно в разных условиях освещенности. В условиях яркой освещенности изображение цветное. В темное время суток, когда яркий свет пропадает, и начинаются сумерки, изображение становится черно-белое, в результате чего повышается чувствительность.

Кодек – в системах связи кодек это обычно кодер/декодер. Кодеки используются в интегрированных цепях или микросхемах для преобразования аналоговых видео- и аудиосигналов в цифровой формат для последующей передачи. Кодек также преобразует

принимаемые цифровые сигналы в аналоговый формат. В кодеке одна микросхема используется для преобразования аналогового сигнала в цифровой и цифрового сигнала в аналоговый. Термин «Кодек» также может относиться к компрессии/декомпрессии, и в этом случае он обычно означает алгоритм или компьютерную программу для уменьшения объема файлов и программ.

Нормально замкнутые контакты – такая конструкция датчика, которая в пассивном состоянии имеет замкнутые контакты, а в активном — разомкнутые.

Нормально разомкнутые контакты – такая конструкция датчика, которая в пассивном состоянии имеет разомкнутые контакты, а в активном – замкнутые.

Объектив – это часть оптической системы видеонаблюдения, предназначенная для фокусировки потока света на матрице видеокамеры.

Отношение сигнал/шум — численно определяет содержание паразитных шумов в сигнале. Измеряется в децибелах (дБ). Чем больше значение отношения сигнал/шум для видеосигнала, тем меньше помех и искажений имеет изображение.

Пиксель – это одна из множества точек, составляющих цифровое изображение. Цвет и интенсивность каждого пикселя составляет крошечную область изображения.

Прокси-сервер (Proxy – представитель, уполномоченный) – служба в компьютерных сетях, позволяющая клиентам выполнять косвенные запросы к другим сетевым службам. Сначала клиент подключается к прокси-серверу и запрашивает какой-либо ресурс, расположенный на другом сервере. Затем прокси-сервер либо подключается к указанному серверу и получает ресурс у него, либо возвращает ресурс из собственного кэша. Прокси-сервер позволяет защищать клиентский компьютер от некоторых сетевых атак и помогает сохранять анонимность клиента.

Протокол – стандарт, определяющий поведение функциональных блоков при передаче данных. Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах.

Разрешение изображения — это количество пикселей (точек) на единицу площади изображения. Измеряется в мегапикселях или отображается в виде двух величин — высоты и ширины изображения. Высота и ширина также в данном случае измеряются в пикселях.

Ручная диафрагма – противоположность автоматической диафрагмы, т.е. настройка диафрагмы камеры должна выполняться вручную для регулировки количества света, достигающего чувствительного элемента.

Светосила объектива – это характеристика, показывающая, какое количество света способен пропускать данный объектив. Чем больше максимальный диаметр открытой диафрагмы (или, соответственно, чем меньше F-число), тем большее количество света может попасть сквозь объектив на фокальную плоскость, и тем выше светосила объектива.

Симплекс — при симплексной связи сетевой кабель или канал связи может использоваться для передачи информации только в одном направлении.

Уличная видеокамера – это камера видеонаблюдения, которая обладает всеми необходимыми характеристиками защиты от влияния внешней среды для работы на улице.

Цветная видеокамера — это камера, которая дает цветное изображение. По определению матрицы видеокамер черно-белые, а для получения цветного изображения возле каждой ячейки матрицы формируются цветные фильтры. Первый фильтр привносит красную составляющую цвета, второй зеленую, а третий синюю. Таким образом, три ячейки становятся одной точкой в цветовом формате RGB. Следовательно, вместо трех пикселей на результирующем изображении мы получаем только один.

Электромеханический ИК-фильтр — представляет собой устройство, которое способно в одном режиме подавлять инфракрасный диапазон при помощи инфракрасного ИК-фильтра, а в другом режиме ИК-фильтр убирается электромеханически, таким образом, делая доступным весь спектр светоизлучения.